

Excision BioTherapeutics Announces Publication in Molecular Therapy Methods & Clinical Development Highlighting EBT104 for the Treatment of HSV-1 Keratitis

- Treatment with EBT-104 led to complete elimination of viral shedding in 92% eyes of treated rabbits
- Excision's proprietary gene editing technology holds unique, curative potential to address the leading cause of corneal blindness in the United States
- Global incidence of HSV keratitis is estimated at 1.5 million annually, including 40,000 new cases that result in severe visual impairment
 - Technology may also be applicable to a range of HSV1-related diseases

SAN FRANCISCO, Aug. 14, 2024 (GLOBE NEWSWIRE) -- Excision BioTherapeutics, Inc. ("Excision", the "Company"), a clinical-stage biotechnology company developing CRISPR-based therapies to cure serious latent viral infectious diseases, today announced the *Molecular Therapy Methods & Clinical Development* publication of a preclinical study of EBT-104 in herpes simplex virus-1 keratitis (HSV-1 Keratitis).

EBT-104 is a CRISPR-based gene therapy that is being developed as a potential cure for HSV-1 Keratitis. EBT-104 utilizes a CRISPR/Cas gene editing system to inactivate the latent HSV-1 virus by co-targeting two essential HSV-1 genes, ICP0 and ICP27.

"Positive preclinical data published in *Molecular Therapy Methods & Clinical Development* demonstrate EBT-104's potential as a curative approach for HSV-1 keratitis," said Daniel Dornbusch, Chief Executive Officer of Excision. "HSV-1 keratitis remains a leading cause of corneal blindness globally, with almost no therapeutic advancements made over the last several decades. Using our CRISPR/Cas9 targeted approach, Excision is pioneering a potentially curative treatment modality for herpes keratitis that disrupts the production of two critical genes in the HSV-1 genome, ICP0 and ICP27. As the data from this study show, excising these two genes led to the safe and effective inhibition of the viral infection in 92% of the treated rabbits' eyes, providing us with a strong rationale for continuing to advance EBT-104 into human testing and further underscoring the unique potential of our gene editing technology. We look forward to generating additional data and addressing other HSV-associated diseases including herpes labialis, herpes simplex encephalitis, and genital herpes."

The article entitled, "CRISPR/Cas9-mediated genome editing delivered by a single AAV9 vector inhibits HSV-1 reactivation in a latent rabbit keratitis model" is available online.

About Herpes Simplex Keratitis

Herpes Simplex Keratitis (HSK) caused by the infection of herpes simplex virus type 1 (HSV-1) in the cornea is a major cause of blindness worldwide. Although current anti-HSV-1 therapies interfere with viral DNA replication, they do not eliminate latent HSV-1 reservoirs or prevent recurrence. CRISPR/Cas-mediated gene editing can potentially address the underlying causes of the disease by directly eliminating the latent HSV-1 reservoirs.

About Excision BioTherapeutics, Inc.

Excision BioTherapeutics, Inc. develops CRISPR-based medicines as potential cures for serious viral latent infectious diseases based on its proprietary multiplexed gene editing platform that unites next-generation CRISPR nucleases with a novel gene editing approach to develop curative therapies. The Company's pipeline targets large, underserved markets including herpes simplex virus-1 keratitis (HSV-1 keratitis), hepatitis B virus (HBV), and human immunodeficiency virus-1 (HIV-1). Excision's foundational technologies were developed in the laboratories of Dr. Kamel Khalili at Temple University and Dr. Jennifer Doudna at the University of California, Berkeley. For more information, please visit www.excision.bio.

Contact:

John Fraunces LifeSci Advisors 917-355-2395 <u>ifraunces@lifesciadvisors.com</u>

Source: Excision BioTherapeutics