Dianhydrogalactitol (VAL-083) causes irreparable DNA double-strand breaks, S/G2 phase cell-cycle arrest and tumor cell death in an MGMT independent manner offering a unique treatment paradigm for GBM

Beibei Zhai^{1, 2}, Anne Steino³, Jeffrey Bacha³, Dennis Brown³, and Mads Daugaard^{1, 2}

¹Vancouver Prostate Centre, Vancouver, Canada; ²Department of Urologic Sciences, University of British Columbia, Vancouver, Canada; ³DelMar Pharmaceuticals, Inc., Vancouver, Canada and California, CA

VAL-083

VAL-083 is a bifunctional alkylating agent causing alkylation of N⁷-guanine leading to interstrand DNA crosslinks¹ and DNA double strand breaks (DSB). We have previously shown that VAL-083's cytotoxic activity is independent of MGMT in contrast to temozolomide (TMZ) and nitrosoureas (Fig 2).2 Likely due to its different mechanism, VAL-083 has also been shown to overcome both BCNU-resistance¹ and TMZ-resistance^{2,3} vitro. We in have previously demonstrated VAL-083 is active against GBM cancer stem cells (CSCs) and acts as a radiosensitizer in GBM CSCs, in vitro.2 We have also previously shown that VAL-083 circumvents cisplatin-resistance and is less dependent on p53 activity than cisplatin suggesting a distinct mechanism of action for VAL-083 from other alkylating agents used in the treatment of brain cancer (Table 1).4 VAL-083 readily crosses the blood-brain barrier, accumulates in brain tumor tissue and has shown activity in prior NCI-sponsored clinical trials against CNS tumors, including GBM medulloblastoma. VAL-083 has received orphan drug designation in the U.S. for the treatment of gliomas, medulloblastoma and ovarian cancer; and in Europe for gliomas and is approved in China for the treatment of chronic myelogenous leukemia and lung cancer.

Fig 1. VAL-083 induces interstrand crosslink leading to double-strand breaks, S/G2 phase arrest and HR activation. Red color signifies demonstrated activation/expression after VAL-083 treatment.

Here we report new insights into VAL-083 mechanism of action by showing that VAL-083 rapidly induces interstrand DNA cross-links leading to irreparable DNA double-strand breaks, irreversible S/G₂ cell-cycle arrest, activation of the HR DNA repair pathway and cancer cell death caused by replicationdependent DNA damage. In addition to Chk1 and ATR phosphorylation⁴, VAL-083 pulse-treatment leads to persistent phosphorylation of histone variant H2A.X (yH2A.X), ATM, Replication Protein A (RPA32) and Chk2 (Fig 3). VAL-083 induced persistent S/G2 phase cell cycle arrest in cells with DNA

double-strand breaks (Table 2).

Fig 2. In vitro activity of VAL-083 vs.TMZ in GBM cell lines SF188 (MGMT-), and T98G (MGMT+) as impacted by expression of MGMT repair enzyme.3

Fig 3. VAL-083 pulse treatment activated HR DNA damage signaling pathway as demonstrated by expression of phospho-ATM (S1981), phospho-Chk2 (T68), phospho-RPA32 (S33) and yH2A.X which persisted for 24 - 48 h after removal of VAL-083 from the medium.

Table 2. VAL-083 pulse treatment induced co-localized DNA double-strand breaks (yH2A.X) and S/G2 phase cell cycle arrest (cyclin A2).

PC3 cells	γH2A.X + cyclin A2+	
Con 1h	2.8 %	
VAL-083 1h	2.6 %	
Con 24h	16.5 %	
VAL-083 1h +WO 24h	90.3 %	

Alkylating agent	Temozolomide ⁵	BCNU/CCNU ^{1,5}	Cisplatin/carboplatin ^{5,6}	VAL-083 ^{1,2,3,4}
Cytotoxic target	O6-Guanine	O6-Guanine	N7-Guanine	N7-Guanine
DNA damage	Base mismatch Single-strand break	Interstrand crosslinks (G-C) Double-strand break	Intrastrand crosslinks (G-G) Double-strand break	Interstrand crosslinks (G-G) Double-strand break
Cell cycle arrest	G2/M	G2/M	G2	Late S/G2
ATR-Chk1	activated	activated	activated	activated
ATM-Chk2	activated	activated	activated	activated
MGMT	dependent	dependent	independent	independent
MMR	dependent	independent	dependent	independent
p53	dependent	dependent	dependent	Less dependent
Cross blood-brain barrier?	yes	yes	no	yes

CONCLUSIONS & FUTURE DIRECTIONS

- VAL-083 induces irreparable DNA double-strand breaks, irreversible S/G2 cell-cycle arrest and activation of the homologous recombination DNA repair pathway
- > VAL-083 has a unique molecular mechanism that differs from both temozolomide, nitrosoureas or cisplatin/carboplatin and is less dependent on p53
- VAL-083's mechanism is resistant to important DNArepair strategies employed by cancer cells to escape effects of alkylating agents commonly used in the treatment of GBM
- VAL-083 is being advanced in clinical trials for GBM and other indications

References

- 1. Institoris E, et al. Cancer Chemother Pharmacol 1989;24(5):311-3 3. Hu K, et al. Cancer Research, Apr15, 2012; Volume 72 (8) Suppl. 1
- 2. Fouse S, et al. SNO annual meeting 2014, Abstract #ET-18
- 5. Ramirez, YP, et al. Pharmaceuticals 2013, 6(12), 1475-1506 (review)
- 4. Steino A, et al. AACR annual meeting 2016, Abstract #5279 6. Martin, LP, et al. Clin Cancer Res 2008;14(5): 1291-95 (review)