

Derek Gauntlett – Sr. Director ECO Process Development

RNA Synthesis – An Evolving Manufacturing Landscape

	Phosphoramidite Chemistry
Development status	>40 years; mature w/ incremental improvements
Product quality	Lower
Product yield	Lower
ESG	>3000 kg organic solvent/kg API

RNA Synthesis – An Evolving Manufacturing Landscape

	Phosphoramidite Chemistry	Enzymatic Ligation
Development status	>40 years; mature w/ incremental improvements	Ready for manufacturing
Product quality	Lower	Higher
Product yield	Lower	Higher
ESG	>3000 kg organic solvent/kg API	Partially aqueous

RNA Synthesis – An Evolving Manufacturing Landscape

	Phosphoramidite Chemistry	Enzymatic Ligation	Enzymatic Sequential Synthesis
Development status	>40 years; mature w/ incremental improvements	Ready for manufacturing today	Operational prototype w/ path to manufacturing
Product quality	Lower	Higher	Higher w/ potential for more
Product yield	Lower	Higher	Higher w/ potential for more
ESG	>3000 kg organic solvent/kg API	Partially aqueous / organic	Fully aqueous

Progress Achieved on the ECO Synthesis™ Manufacturing Platform

Demonstrating the Power of Combining Enzyme Engineering & Process Development in One Year

Incorporation efficiency: ~92%

FLP at 8mer (max. 6) = 72.3%

Accepting mod. nucleotides:

2'-OMe, 2'-F, PS

Incorporation efficiency: >98%

FLP at 8mer (max. 14) = 92.7%

Accepting mod. nucleotides:

2'-OMe, 2'-F, PS, dT,

Conjugation

Incorporation efficiency: >98%

FLP at 8mer (max. 16) = 94.9%

Accepting mod. nucleotides: 2'-OMe,

2'-F, PS, dT, Conjugation

Therapeutic Sense and

Antisense Fully Synthesized

Nov 2023 **TIDES EU**

Dec 2023

May 2024 TIDES USA Nov 2024 **TIDES EU**

Gram-scale synthesis (N+6 w/fully modified nucleotides)

ECO Synthesis™ Technology Enables Manufacturing Versatility

4-Synthesis approaches to demonstrate ECO Synthesis™ toolbox for manufacturing RNA.

Synthesis

inclisiran

- Route 1: ECO Sequential Synthesis Sequential synthesis of both sense and antisense strands (21-mer & 23-mer), including enzymatic ligation of targeting moiety (GalNAc)3.
- Route 2: PAC + dsRNA ligase Chemical synthesis of four single strand fragments by phosphoramidite chemistry (PAC), followed by dsRNA ligation to full length product Inclisiran.
- Route 3: PAC / ECO + dsRNA ligase Four single strand fragments synthesized by either ECO Synthesis™ technology or PAC, followed by dsRNA ligation to full length product Inclisiran.
- Route 4: ECO + dsRNA ligase Four single strand fragments synthesized by ECO Synthesis™ technology including enzymatic ligation of (GalNAc)3 on the sense strand, followed by dsRNA ligation to full length product Inclisiran.

CODEXIS

ECO Synthesis™ Technology - Overview

Oligonucleotide synthesis by sequential incorporation of modified nucleotides via a two-step extend & deblock protocol

Key Performance Indicators for ECO enzymes:

- Non-native Substrates
- Enzyme Promiscuity
- Productivity / Coupling Efficiency
- Enzyme Robustness

Conjugation of Tissue Targeting Moieties

L96 for inclisiran sense strand

- Codexis has engineered a manufacturable, highly active single-stranded (ss)RNA ligase with broad tolerance for conjugated nucleotides.
- Successful incorporation of L96 donor and inclisiran oligo as acceptor at mM concentrations.

Enzymatic conjugation enables incorporation of tissue targeting moieties allowing manufacturing pathways for therapeutically relevant siRNA

ECO SynthesisTM Process Overview

Process Characteristics:

- Enzymes immobilized within reactor
- Oligo in solution with aqueous reaction system

Process Conditions:

- [Oligo]: 6mM
- [NQP]: 1.5 mol eq.
- > 4-hour cycle time per NQP deblock/extension

CODEXIS®

Sequential Enzymatic Synthesis - By the Numbers

Sense and antisense strands synthesized using ECO Synthesis™ manufacturing platform

Compound	RNA Starter Length	Number of Extensions	Added Monomer	Avg. Coupling Efficiency (%)
Sense Strand	7	14	2'F / 2'OMe / L96	98.4
Antisense Strand	7	16	2'F / 2'OMe	98.0

Antisense Purity

ID	Area %
N-1	5.3
PS->PO	6.2
N-1 & PS->PO	7.8
FLP	73.9
N+1	6.8

Sense Purity

ID	%Area
N-2	2.6
N-1 & PS->PO	6.9
FLP	80.2
N+1	10.3

Sense LC-UV260nm Spectra note - diastereomer resolution of FLP

Ligation Disconnection Strategy

Route 2: PAC + dsRNA ligase

Two nick / four-fragment approach used for the generation of inclisiran

Route 2: PAC + dsRNA ligase

Ligation Using PAC Fragments - inclisiran

Low concentrations of Codexis dsRNA ligase with PAC fragments result in high conversion yields

Parameter	Condition
Substrate (g/L)	6 to 98
CDX Ligase (mg/mL)	0.1
Buffer Composition	Aqueous / TRIS
Incubation Temperature (°C)	33
Incubation Time (h)	6

Ligation Using PAC + ECO Fragments - inclisiran

Route 3: PAC / ECO + dsRNA ligase

Two nick approach using a combination of PAC and ECO derived fragments for the generation of inclisiran

Example: 1 PAC / 3 ECO Disconnection

Ligation Using PAC + ECO Fragments - inclisiran

Route 3: PAC / ECO + dsRNA ligase

Using low concentrations of Codexis dsRNA ligase with PAC + ECO fragments result in high

conversion yields

D	<u> </u>	: <u>-</u> :
Urncacc	$I \cap D \cap D$	ITIONS
Process	COLIG	ILIUIIS

Parameter	Condition
Substrate (g/L)	6
CDX Ligase (mg/mL)	0.1
Buffer Composition	Aqueous / TRIS
Incubation Temperature (°C)	33
Incubation Time (h)	6

Ligation is successful when using ECO and PAC synthesized fragments enabling both synthesis routes when manufacturing siRNA.

Ligation Using ECO Fragments - inclisiran

Route 4: ECO + dsRNA ligase

Two nick using 4 ECO derived fragment approach used for the generation of inclisiran

Route 4: ECO + dsRNA ligase

Ligation Using ECO Fragments - inclisiran

Low Codexis dsRNA ligase concentrations with ECO fragments result in high duplex yields

Parameter	Condition
Substrate (g/L)	6
CDX Ligase (mg/mL)	0.1
Buffer Composition	Aqueous / TRIS
Incubation Temperature (°C)	33
Incubation Time (h)	6

Ligation is successful when using ECO synthesized fragments pushing toward fully enzymatic synthesis of siRNA.

Adaptable Ligation via ECO & PAC Fragments for high yielding siRNA Duplex

Ligation Performance Takeaway

- Ligation using ECO and PAC fragments with Codexis dsRNA ligase yield high ligation efficiencies ≥ 98%.
- Similar impurity profiles observed

Note: process optimization can further improve duplex & impurity profile

Fragment	% I	_igation
Composition	Sense	Antisense
4 PAC	99.5	98.5
1 ECO / 3 PAC	99.6	99.0
2 ECO / 2 PAC	99.5	99.4
3 ECO / 1 PAC	99.2	99.9
4 ECO	98.6	99.8

Ligation Impurity Profile - % Comparison Summary

Codexis demonstrated ligation of siRNA using 4 different synthesis routes to meet your needs

Ligation Pathway	Conversion (%)	Antisense Strand (%)	Sense Strand (%)	Crude Duplex Purity (%)	Notable Impurities
4 PAC	>98	53.3	41.6	91.5	AS1, S2
1 ECO / 3 PAC	>98	52.8	37.9	85.0	AS2, S2
2 ECO / 2 PAC	>98	51.6	44.1	88.8	AS2, S2
3 ECO / 1 PAC	>98	51.8	41.3	87.8	AS2, S2
4 ECO	>98	50.0	39.0	86.9	AS2, S2

Forward Looking for ECO Synthesis™ Manufacturing Platform

Codexis is positioned to supply therapeutic siRNA in 2025 from our Innovation Lab

- ECO Synthesis™ manufacturing platform has made significant progress since TIDES EU in November 2023
 - Ligation Services are available today!
- Continue process development and demonstrated scale up
 - Improving yield recovery across the synthesis via oligonucleotide recovery from resin / step
 - Decreased cycle times for volumetric productivity improvements
 - Drive bench scale to larger scale productions for both sequential and ligation siRNA processes
 - Assess automation processes for sequential synthesis and ligation
- Continue enzyme engineering on resin activity improvements

Step into the future of manufacturing RNA

Booth #709

