Driving GPU Leadership

David Wang
Senior Vice President, Engineering, Radeon Technologies Group
Cautionary Statement

This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD) including, but not limited to, AMD’s GPU momentum and strategy; AMD’s gaming GPU and compute GPU architecture roadmaps; and the timing, availability, features, functionality and expected benefits of AMD’s products, which are made pursuant to the Safe Harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such as "would," "may," "expects," "believes," "plans," "intends," "projects" and other terms with similar meaning. Investors are cautioned that the forward-looking statements in this presentation are based on current beliefs, assumptions and expectations, speak only as of the date of this presentation and involve risks and uncertainties that could cause actual results to differ materially from current expectations. Such statements are subject to certain known and unknown risks and uncertainties, many of which are difficult to predict and generally beyond AMD’s control, that could cause actual results and other future events to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Investors are urged to review in detail the risks and uncertainties in AMD’s Securities and Exchange Commission filings, including but not limited to AMD’s most recent reports on Forms 10-K and 10-Q.

AMD does not assume, and hereby disclaims, any obligation to update forward-looking statements made in this presentation, except as may be required by law.
AMD GPU MOMENTUM

Supercomputer
- Frontier
- LUMI
- Adastra

Data Center
- AWS
- Google Cloud
- Microsoft Azure

PC
- Radeon™ RX 6000 Series
- Radeon™ W6000 Series
- Ryzen™ 6000 Series

Console
- PlayStation 5
- Xbox Series X | S
- Steam Deck

Embedded
- Magic Leap
- Tesla

Mobile
- Samsung
GPU TECHNOLOGY STRATEGY
DELIVERING PERFORMANCE AND EFFICIENCY LEADERSHIP

Architecture
Domain-Specific Architecture Optimizations

Technology
Advanced Process and Packaging Technologies

Efficiency
Leadership Performance-Per-Watt Roadmap

Ecosystem
Open-Source Software, Including AI
AMD RDNA™ 2
ARCHITECTURE
Designed for enthusiast gaming

— Innovation
High-Speed Compute Units, Raytracing Cores, AMD Infinity Cache™, DX12® Ultimate

— Performance
Delivered 2X Performance and More Than 50% Performance-Per-Watt Gains vs. AMD RDNA™

— Scalability
Powers Mobile, Console, Ryzen™ APU, Radeon™ GPU, and Cloud

See endnotes RX-549 and RX-558
GREAT HARDWARE NEEDS
GREAT SOFTWARE

15% Year-Over-Year Uplift
Day-0 Driver Support

Focus on Quality and Stability
Continuous Performance Improvements
Immersive Experiences

Community Engagement
Vigorous Testing
Regular Updates

AMD Radeon Anti-Lag
AMD Radeon FreeSync
AMD Radeon Boost

AMD Radeon Image Sharpening
AMD Radeon FidelityFX
AMD Radeon Super Resolution

Performance Uplift: Comparing AMD Software: Adrenalin 22.3.1 vs. 20.12.2. See endnote RS-462
THE JOURNEY CONTINUES

Projected Performance/Watt Uplift

Performance-per-watt uplift through:

- 5nm Process
- Advanced Chiplet Packaging
- Rearchitected Compute Unit
- Optimized Graphics Pipeline
- Next-Gen AMD Infinity Cache™

Based on preliminary internal engineering estimates. Actual results subject to change.
AT THE FOREFRONT OF GRAPHICS INNOVATION

Advanced Chiplet Packaging
Leadership Performance and Scalability

End-to-End Power Optimization
System Level Energy Efficiency

Hybrid Rendering
Real-Time Immersive Experiences

Next-Gen Multimedia
Enhanced Video and Display Capabilities
AMD GAMING GPU ARCHITECTURE ROADMAP

DRIVING PERFORMANCE AND EFFICIENCY LEADERSHIP

2019

2024

All roadmaps are subject to change.
AMD CDNA™ 2 ARCHITECTURE
Exascale-class technology for HPC/AI

Innovation
High-Performance Dual Engines in MCM, 3rd Gen AMD Infinity Architecture, Ultra-Wide HBM Interface

Performance
~4X Higher FP64 (HPC) and ~2X Mixed Precision (AI) Peak Performance than AMD CDNA™

Open Ecosystem
Broaden ROCm™ Open Software Platform, Including AI

See endnotes MI200-05 and MI200-01
AMD CDNA™ 2 LEADERSHIP PERFORMANCE AND EFFICIENCY

AMD Instinct™ MI250X vs. Nvidia A100

~2.8X

~1.9X

~2.0X

~1.5X

HPL

HPL-AI

Performance

Performance-Per-Watt

See Endnotes: M1200-268 and M1200-58
AMD ROCm
OPEN SOFTWARE PLATFORM FOR GPU COMPUTE

- Unlocked GPU Performance to Accelerate Computational Tasks
- Optimized for HPC and AI Workloads at Scale
- Open Source Enabling Collaboration, Innovation, and Differentiation

<table>
<thead>
<tr>
<th>AI Framework Support</th>
<th>ONNX Runtime</th>
<th>PyTorch</th>
<th>TensorFlow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Models</td>
<td>OpenMP API</td>
<td>HIP API</td>
<td>OpenCL™</td>
</tr>
<tr>
<td>Libraries</td>
<td>BLAS</td>
<td>RAND</td>
<td>FFT</td>
</tr>
<tr>
<td></td>
<td>SOLVER</td>
<td>ALUTION</td>
<td>MiGraphX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MiVisionX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PRIM</td>
</tr>
<tr>
<td>Compilers & Tools</td>
<td>Compiler</td>
<td>Profiler</td>
<td>Tracer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Debugger</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hipify</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TENSILE</td>
</tr>
<tr>
<td>Drivers & Runtime</td>
<td>RedHat, CentOS, SLES & Ubuntu Device Drivers and Run-Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deployment Tools</td>
<td>ROCm Validation Suite</td>
<td>ROCm Data Center Tool</td>
<td>ROCm SMI</td>
</tr>
</tbody>
</table>
FROM HPC TO AI

ROCM™ JOURNEY TO ECOSYSTEM ENABLEMENT

ROCM 4
HPC and Exascale

- Optimized HPC Performance
- Enabled AMD CDNA™ GPUs
- Hardened for Scale

ROCM 5
Expanding to AI

- Optimized Training & Inference Performance
- Enabling AMD CDNA™ & AMD RDNA™ GPUs
- SDK for Development & Deployment

2021 — 2022
INNOVATING AI THROUGH DEEP PARTNERSHIPS

Microsoft Azure

Accelerating ROCm Performance on AI

“We’re also deepening our investment in the open-source PyTorch framework, working with the PyTorch Core team and AMD both to optimize the performance and developer experience for customers running PyTorch on Azure, and to ensure that developers’ PyTorch projects work great on AMD hardware.”

Kevin Scott
Executive Vice President and CTO, Microsoft

PyTorch

Optimizing ROCm for PyTorch

“We are excited to partner with AMD to grow our PyTorch support on ROCm, enabling the vibrant PyTorch community to adopt the latest generation of AMD Instinct GPUs quicker than ever with great performance for major AI use cases running on PyTorch.”

Soumith Chintala
Co-Creator and Lead of PyTorch, Meta AI

LANDING AI

Developing Data Centric AI for Instinct™ GPUs

“We are excited to partner with AMD to leverage AMD MI200 GPUs and the ROCm stack to port and optimize LandingLens, our GPU-optimized computer vision software application. The power of AMD GPUs and the maturity of ROCm will help Landing AI continue to deliver acceleration of high-resolution computer vision models with the purpose of providing better insights into manufacturing defects.”

Andrew Ng
CEO of Landing AI and Adjunct Professor, Stanford University
Expected performance-per-watt uplift through:

- 5nm Process and 3D Chiplet Packaging
- Next-Gen AMD Infinity Cache™
- 4th Gen Infinity Architecture
- Unified Memory APU Architecture
- New Math Formats

See endnote M300-04. Preliminary data and projections, subject to change.
UNIFIED MEMORY APU ARCHITECTURE BENEFITS

AMD CDNA™ 2 Coherent Memory Architecture

- Simplifies Programming
- Low Overhead 3rd Gen Infinity Interconnect
- Industry Standard Modular Design

AMD CDNA™ 3 Unified Memory APU Architecture

- Eliminates Redundant Memory Copies
- High-Efficiency 4th Gen AMD Infinity Architecture
- Low TCO with Unified Memory APU Package

AMD Projections
AMD COMPUTE GPU ARCHITECTURE ROADMAP

DRIVING PERFORMANCE AND EFFICIENCY LEADERSHIP

2020

7nm

6nm

5nm

2023

All roadmaps are subject to change.
OUR PATH FORWARD

GPU TECHNOLOGY FOCUS

- Leadership AMD RDNA™ / AMD CDNA™ Architecture Roadmaps
- Advanced Process and Packaging Technologies
- Consistent Execution of Performance-Per-Watt Roadmap
- Expanding Open Software Ecosystems Including AI
DISCLAIMER

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. CD-18

© 2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD Instinct, AMD RDNA, Infinity Cache, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective owners.
ENDNOTES

• RX-549 – Testing done by AMD performance labs 10/16/20, using Assassins Creed Odyssey (DX11, Ultra), Battlefield V (DX12, Ultra), Borderlands 3 (DX12, Ultra), Control (DX12, High), Death Stranding (DX12 Ultra), Division 2 (DX12, Ultra), F1 2020 (DX12, Ultra), Far Cry 5 (DX11, Ultra), Gears of War 5 (DX12, Ultra), Hitman 2 (DX12, Ultra), Horizon Zero Dawn (DX12, Ultra), Metro Exodus (DX12, Ultra), Resident Evil 3 (DX12, Ultra), Shadow of the Tomb Raider (DX12, Highest), Strange Brigade (DX12, Ultra), Total War Three Kingdoms (DX11, Ultra), Witcher 3 (DX11, Ultra no HairWorks) at 4K. System comprised of a Radeon RX 6800 XT with AMD Radeon Graphics driver 27.20.12031.1000 and an Radeon RX 5700 XT with AMD Radeon Graphics driver 26.20.13001.9005. Performance may vary.

• RX-558 – Testing done by AMD performance labs October 20 2020 on RX 6900 XT and RX 5700 XT (20.45-201013n driver), AMD Ryzen 9 5900X (3.70GHz) CPU, 16GB DDR4-3200MHz Engineering AM4 motherboard, Win10 Pro 64. The following games were tested at 4k at max settings: Battlefield V DX11, Doom Eternal Vulkan, Forza DX12, Resident Evil 3 DX11, Shadow of the Tomb Raider DX12. Performance may vary. RX-558R5-462 – Testing conducted by AMD as of February 16, 2022, on a test system configured with a Ryzen 5 5600X CPU, 16GB DDR4, Radeon RX 6800 XT GPU, and Windows 10 Pro, with AMD Software: Adrenalin 22.3.1 vs. 20.12.2 at 4K, Max settings. Performance may vary. Games tested: Age of Empires 4, Borderlands 3, Call of Duty: Vanguard, Cyberpunk 2077, F1 2021, Far Cry 6, Forza Horizon 4, Guardians of the Galaxy, Hitman 3, The Medium, Metro Exodus Enhanced Edition, Myst, RDR2, Resident Evil Village, and PUBG.

• RX-785 Testing done by AMD performance labs May 31, 2022, on (11) AMD Radeon™ RX 6000 Series graphics cards, using systems configured with Ryzen™ 9 5900X and Ryzen™ 5 5600X CPUs, each with 16GB DDR4-3600MHz and AMD Smart Access Memory enabled, Win 10 Pro versus similarly configured systems with (11) Nvidia GeForce RTX 3000 Series. GeForce GTX 1650 and GTX 1050 Ti GPUs, each with ReBAR enabled. Performance tested across 20 games at 4K, 1440P and 1080P resolutions, at intended settings for each of the (22) AMD and NVIDIA GPUs. Performance per watt and per die size calculated using the total board power (TBP) and die sizes of the (22) individual AMD and NVIDIA GPUs over the average FPS scores. Performance may vary.

• GD-164 – Day-0 driver compatibility and feature availability depend on system manufacturer and/or packaged driver version. For the most up-to-date drivers, visit AMD.com

• MI200-05 - Measurements conducted by AMD Performance Labs as of Sep 10, 2021 on the AMD Instinct™ MI250X accelerator designed with AMD CDNA™ 2 6nm FinFET process technology with 1,700 MHz engine clock resulted in 47.9 TFLOPS peak double precision (FP64) floating-point, 387.0 TFLOPS peak BF16 format (BF16) floating-point performance. The results calculated for AMD Instinct™ MI100 GPU designed with AMD CDNA 7nm FinFET process technology with 1,502 MHz engine clock resulted in 11.54 TFLOPS peak double precision (FP64) floating-point, 92.28 TFLOPS peak BF16 format (BF16) performance.
ENDNOTES

- MI200-01 - World’s fastest data center GPU is the AMD Instinct™ MI250X. Calculations conducted by AMD Performance Labs as of Sep 15, 2021, for the AMD Instinct™ MI250X (128GB HBM2e DAM module) accelerator at 1.700 MHz peak boost engine clock resulted in 95.7 TFLOPS peak theoretical double precision (FP64 Matrix), 47.9 TFLOPS peak theoretical double precision (FP64), 95.7 TFLOPS peak theoretical single precision matrix (FP32 Matrix), 47.9 TFLOPS peak theoretical single precision (FP32), 383.0 TFLOPS peak theoretical half precision (FP16), and 383.0 TFLOPS peak theoretical Bfloat16 format precision (BF16) floating-point performance. Calculations conducted by AMD Performance Labs as of Sep 18, 2020 for the AMD Instinct™ MI100 (32GB HBM2 PCIe® card) accelerator at 1,502 MHz peak boost engine clock resulted in 11.54 TFLOPS peak theoretical double precision (FP64), 46.1 TFLOPS peak theoretical single precision matrix (FP32), 23.1 TFLOPS peak theoretical single precision (FP32), 184.6 TFLOPS peak theoretical half precision (FP16) floating-point performance. Published results on the Nvidia Ampere A100 (80GB) GPU accelerator, boost engine clock of 1410 MHz, resulted in 19.5 TFLOPS peak double precision tensor cores (FP64 Tensor Core), 9.7 TFLOPS peak double precision (FP64), 19.5 TFLOPS peak single precision (FP32), 78 TFLOPS peak half precision (FP16), 312 TFLOPS peak half precision (FP16 Tensor Flow), 39 TFLOPS peak Bfloat16 (BF16), 312 TFLOPS peak Bfloat16 format precision (BF16 Tensor Flow), theoretical floating-point performance. The TF32 data format is not IEEE compliant and not included in this comparison. https://www.nvidia.com/content/dam/en-xx/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf, page 15, Table 1.

- MI200-26B – Testing Conducted by AMD performance lab as of 10/14/2021, on a single socket Optimized 3rd Gen AMD EPYC™ CPU (64) server, with 1x AMD Instinct™ MI250X OAM (128 GB HBM2e, 560W) GPU with AMD Infinity Fabric™ technology using benchmark HPL v2.3, plus AMD optimizations to HPL that are not yet upstream. vs. Nvidia DGX dual socket AMD EPYC 7742 (64C) @2.25GHz CPU server with 1x NVIDIA A100 SXM 80GB (400W) using benchmark HPL. Nvidia container image 21.4-HPL Information on HPL: https://www.netlib.org/benchmark/hpl/Nvidia
 HPL Container Detail: https://ngra.nvidia.com/catalog/containers/nvidia/hpc-benchmarks

Server manufacturers may vary configurations, yielding different results. Performance may vary based on use of latest drivers and optimizations.

- MI200-58 – Testing Conducted by AMD performance lab as of 5/25/2022, on a dual socket AMD EPYC™ 7202 Series CPUs (64C) server, with 8x AMD Instinct™ MI250X OAM (128 GB HBM2e, 500W) GPU with AMD Infinity Fabric™ technology using benchmark HPL-AI compiled with HIP version 5.1.20531,cafa909. AMD clang version 14.0.0, OpenMPI 4.1.2. vs. dual socket AMD EPYC 7702 (64C) Series CPU (64C) server with 8x NVIDIA A100 SXM 80GB (400W) using benchmark HPL-AI with CUDA 11.6. HPL-AI container 21.4-hpl information on HPL-AI: https://hpl-ai.org/
 AMD HPL-AI container detail: https://github.com/RQcsmSoftwarePlatform/hpl-ai.gitrev bae3342
 Nvidia HPL-AI Container Detail: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/hpc-benchmarksNvidia container image 21.4-HPL

Server manufacturers may vary configurations, yielding different results. Performance may vary based on use of latest drivers and optimizations.

- MI300-004 – Measurements by AMD Performance Labs June 4, 2022, MI250X (560W) FP16 (306.4 estimated delivered TFLOPS based on 80% of peak theoretical floating-point performance). MI300 FP8 performance based on preliminary estimates and expectations. MI300 TDP power based on preliminary projections. Actual results based on production silicon may vary.