

Towards A Flexible Future

Dr Beverley Brown
Chief Scientist

Forward Looking Statements

This presentation contains forward-looking statements about SmartKem Ltd. based on management's current expectations which are subject to known and unknown uncertainties and risks.

Words such as "anticipated," "initiate," "expect,"
"intend," "plan," "believe," "seek," "estimate," "may,"
and variations of these words or similar expressions are
intended to identify forward-looking statements.
Our actual results could differ materially from those
discussed due to a number of factors, including, but not
limited to, our ability to raise additional equity and debt
financing on favorable terms, the success of our products
under development and other risk factors.

We are providing this information as of the date of this presentation and do not undertake any obligation to update any forward-looking statements contained in this presentation as a result of new information, future events or otherwise. Unless the context requires otherwise, references to "SmartKem," "Company," "we," "us" and "our" refer to SmartKem Ltd.

Company Overview

Enabling today's flexible electronics

Employees: 38 FTEs

.Funding to date: \$60M+

.150+ PhD years in the development of organic semiconductors

.8,000ft² R&D facility in Manchester, UK

Foundry service for prototyping at UK's Centre for Process Innovation (CPI)

Extensive IP portfolio comprising 16 patent families(~120 issued patents; 15 pending & > 30 codified company trade secrets)

Significant Market Opportunities

\$186 Bn Global Display Market 8% CAGR

Driven by demand for consumer electronics

Smartphones

E-Paper Displays

Automotive

Flat Panel Displays (Mini-LED backlights)

\$151 Bn Sensor Market 6% CAGR Driven by IoT and wearables

Wearables

E-Skin

Printed Biosensors

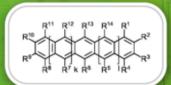
Flexible

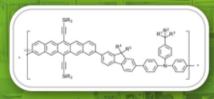
Bendable

Wearable

Lightweight

Setting Up For Successful Mass Deployment


smartkem.com


1. TRUFLEX® Inks – Available at Scale

Components of TRUFLEX® Inks

High Mobility, Small Molecule

- . Intrinsic mobility ≥ 10 cm²/Vs
- Technical team has excellent understanding of formulations
- In-depth knowledge of how to combine small molecule/semiconducting polymer to maximise the performance of OSC layer and resulting oTFT
- More than 50 years expertise relating to OSC formulation

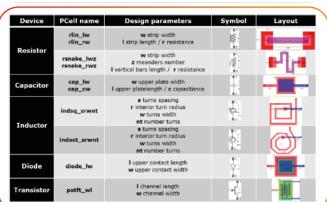
Semiconducting Polymer 'Controls'

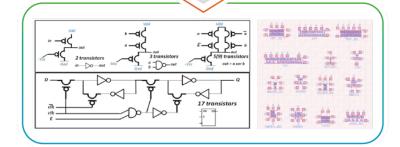
- Morphology of OSC layer
- Phase segregation & uniformity of SM
- Viscosity of ink
 - Best in class performance
 - Compatible with existing a-Si process lines
 - Scaled up manufacture

Solvents

- Solubilise SM & Binder
- Modify surface tension
- Influence ink viscosity
- Customise for range of printing methods

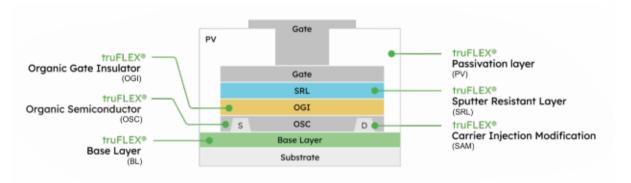
2. TRUFLEX® Electronic Design Automation Tools


smartkem.com


In development

- . PDK (Process Design Kit) establishment (at PE foundries)
- Standard cells parameterizable cells (p-cells)
- Libraries of circuits and other PE devices (force sensor, OLED, OPD, biosensor etc)

3. TRUFLEX® Foundry Services



SmartKem **Technology Advantage**

Leader in the design, development, scale up and manufacture of solution-deposited organic semiconductors for transistor backplanes

Ease of Technology Transfer

Own chemistry, process and stack IP

World leading electronic performance

Ideal for today,s flexible displays

Fabricated on low-cost glass & plastic

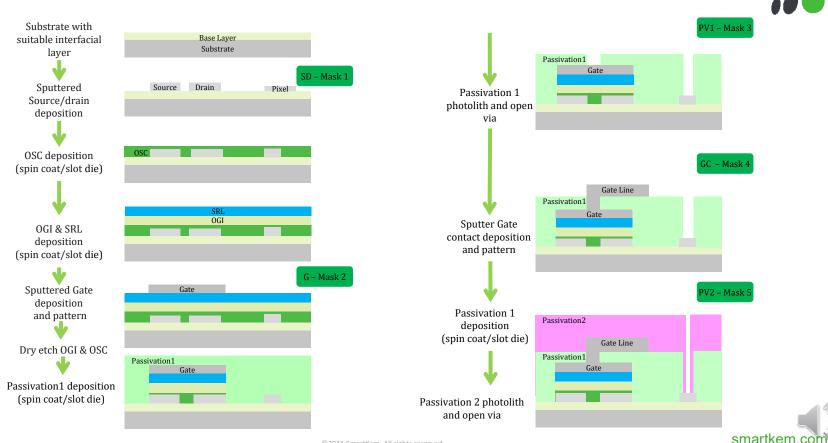
Meets industry test specifications

Drop in technology for a-Si lines

(and ready for next gen)

On specific parameters, outperforms competitive materials (a-Si, IGZO & LTPS)

SmartKem OTFT – Towards a Flexible Future



Parameter	SmartKem OTFT	a-Si	IGZO	LTPS
Current Usage	In development (demonstrated in e-paper, LCD and OLED)	LCD and rigid e-paper	OLED TV and some tablet LCD	Mobile phone (OLED and some LCD)
Typical Charge Mobility in Display Pixel	3 cm²/Vs	0.5 cm ² /Vs	10 cm ² /Vs	50+ cm ² /Vs
Process Temperature	80°C	300 °C	320 °C	350 °C
Substrate Compatibility	Wide range of plastics and glass	Glass	PI/glass	PI/glass
Current Driving Stability	Very Good	Average	Very Good	Excellent
Off Current	Excellent	Average	Excellent	Average
Impact Resistance	Excellent	Poor	Poor	Poor
Bend Radius	0.5mm	4mm	2mm	4mm
Manufacturing Maturity	Prototype	Excellent	Fair	Good
Process Cost	Low	Low	Medium/High	Medium/High

truFLEX® OTFT - Fabrication Process

OTFT **Applications**

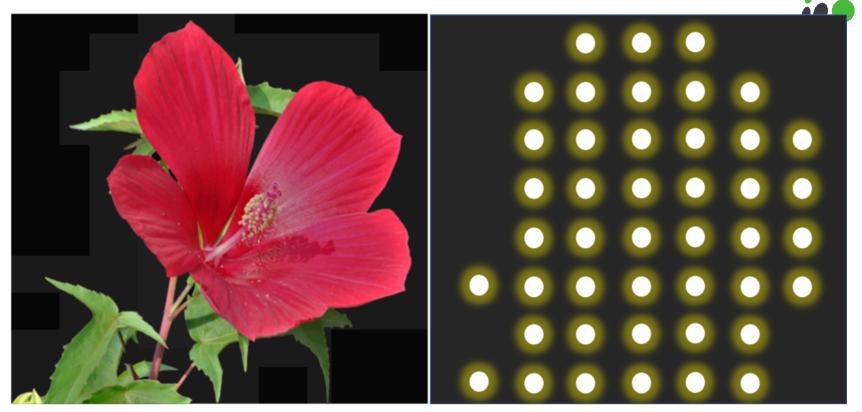
- Many potential applications exist for solution processed OTFT arrays
- Today's presentation will focus on mini-LED backlights (also referred to as Full Array Local Dimming Backlights).

Mini-LED (Full Array Local Area Dimming) Backlights:

Background

LCD Contrast ratio 1000:1

Edge Lit LCD Display- No local dimming



LCD image

Backlight illumination

Direct Lit – <100 Zones

Mini LED backlight LCD - 1000's of

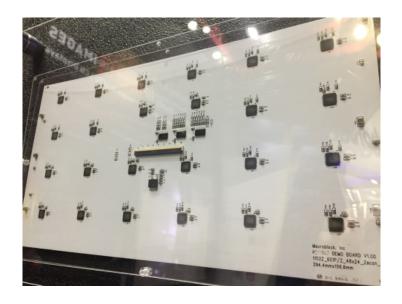
LCD image

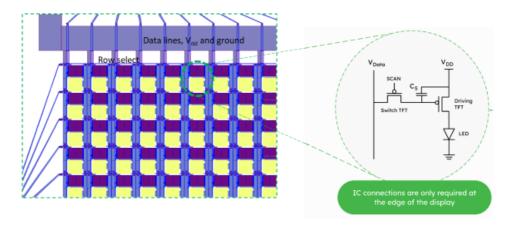
Backlight illumination

FALD – many 1000's of Zones

LCD Image

Backlight illumination


smartkem.com

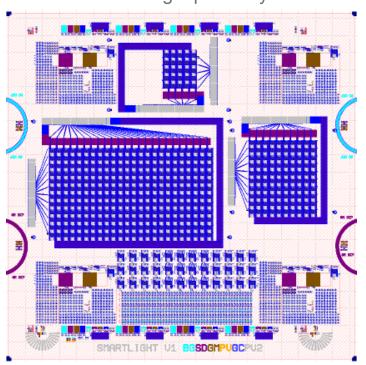

Mini LED – Direct wiring vs backplane approach

Direct wiring

Backplane matrix driving scheme

IC connections are only required at the edge of the display

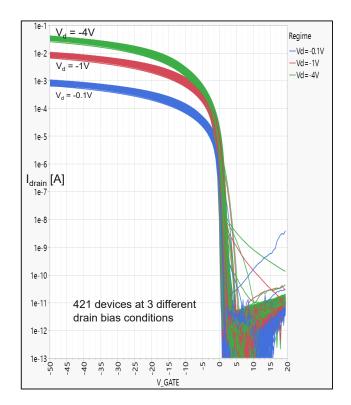
- Glass substrate is flatter and less prone to distortion
- Heat from LEDs can be conducted away from back of substrate (no ICs in the way). On thin plastic substrate, thermal conduction can be very efficient
- Backplane approach can be modified to micro LED in future



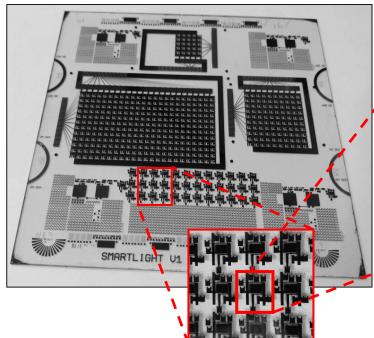
SmartKem OTFT Mini-LED backlight:

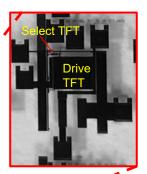
Recently Completed Customer Designs

Mini-LED backlight panel layout



- Contains 3 designs (5 x 5, 10 x 10 and 24 x 12), same pitch (2mm x 2.25mm)
- Individual pixels capable of up to ~100mA current driving at maximum brightness.
- LEDs to be used 9V operation.
- Process to prepare panel uses 6 masks, and tool sets compatible with a-Si line




Electrical Performance of TRUFLEX™ OTFT array

- \circ 40mA median on current, $V_d = -4V$, $V_a = -50V$
- o Off current is a few pA
- On/off ratio is ~10¹⁰

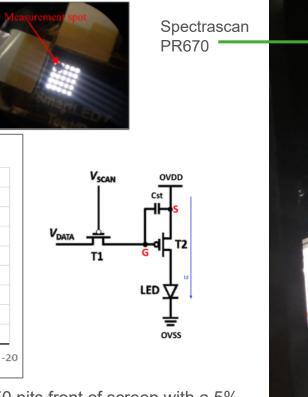
Backlight luminance testing

 V_{dd} to $V_{ss} = +8.6 \text{ V}$ V_{select} +24V to -24V V_{data} vs Luminance measured

[cd/m2 or

Mini LED luminance 90000

> 80000 70000

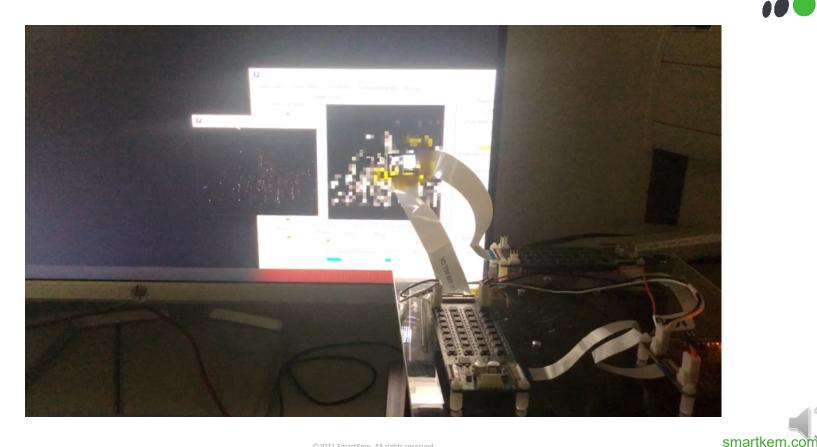

20000 10000

-5

Data Voltage [V]

-10

Measured 85,000 nits – equates to 4250 nits front of screen with a 5% transmission through LCD and a contrast ratio of 1,000,000:1 if the LCD has a native contrast ratio of 2000:1


-15

10

OTFT Active-Matrix Backlight Testing

Scale-up OTFT backplane on existing a-Si

Thank You

Questions?

Dr. Beverley Brown Chief Scientist b.brown@smartkem.com

For more information, contact us

- Manchester Technology Centre, Hexagon Tower, Delaunays Road, Blackley, Manchester, M9 8GQ UK
- +44 (0)161 721 1514
- enquiries@smartkem.com

©2021 SmartKem. All rights reserved