

USING TARGETED
RADIOTHERAPY IN HIGHLY
REFRACTORY MULTIPLE
MYELOMA:
IOPOFOSINE I 131

SNMMI JUNE 26, 2023

SESSION NUMBER: SS30
SESSION TITLE: HEMATOLOGIC MALIGNANCIES
ABSTRACT # P1243

Disclosures

- J. Longcor: Cellectar Biosciences employee
- N. Callander: Employee University of Wisconsin Madison; Research funding from Cellectar Biosciences
- K. Oliver: Cellectar Biosciences employee
- S. Ailawadhi: Employee Mayo Clinic, Jacksonville, FL; Research funding from Cellectar Biosciences
- Ongoing study: Presentation contains preliminary data that are partially monitored and validated

Background: Phospholipid Ether (PLE) Cancer Targeting Platform

Mechanism of Entry and Intracellular Transport

- Tumor cells have different metabolic needs
 - Increased need for phospholipids and fatty acids
- Unlike normal tissue, tumor cells cannot endogenously produce enough lipids to satisfy needs
- In order to satisfy need for lipids, increase and stabilize lipid rafts to bind and internalize lipids
- Lipid rafts also act as signalling hubs; coalesce tyrosine kinase receptors, GPCRs, etc
- PLEs target, bind and enter tumor cells via lipid rafts

In vitro & In vivo Validation

PLEs Provide Novel Method to Target Cancer More Uniformly

- Lipid rafts are present on nearly all tumor types (A-E)
- PLE molecules are being utilized to deliver fluorescent and cytotoxic molecules to tumors (F-H)
- PLEs show preferential uptake in broad range of tumor cells with near uniform uptake (F & G)
- Iopofosine I 131 is a targeted radiotherapeutic composed of ¹³¹I covalently bound to a PLE
- Preclinical studies demonstrate that the PLEs provide delivery of the I-131 to a wide range of tumors, metastases and stem-like cancer cells (I)

A, B, C, D, E demonstrates presence of lipid rafts on various tumors. A=prostate; B=pancreatic; C=renal; D=lung; E is co-culture of lung tumor and normal fibroblasts and treated or 24 hours. Staining is with cholera toxin B.

F, G and H show in vitro uptake of fluorescently labeled PLE. F=colorectal; G=glioma; H is co-culture

I shows iopofosine I 131 targeting in metastatic xenograft model

Rationale for lopofosine I 131 in MM

- MM cells show high concentration of lipid rafts (primary patient and cell lines)
- Uptake confirmed with a fluorescent analog of iopofosine I 131
- Iopofosine has been dosed in over 170 patients to date
 - Phase 1 and Phase 2 studies
 - Hematologic and solid tumor
- Here we provide initial data on the efficacy and safety of iopofosine in relapsed or refractory multiple myeloma patients including patients with progressive disease post CAR-T therapy

CLR 131: r/r Multiple Myeloma (MM) Phase 2 Study Overview

- Dose finding study evaluating either <60 or >60 mCi Total Administered Dose (TAD)
 - Dosed in 1 or 2 cycles each composed of 2 doses (cycle 1 = day 1 and 14; cycle 2 = day 57 and 71)
 - Each dose is 15 mCi/m² requiring approximately 20 mins to infuse
- Primary endpoint is Overall Response Rate (ORR) as determined by IMWG criteria
- Initial major eligibility requirements for MM patients
 - Relapsed or refractory to at least 5 prior lines of treatment
 - ECOG 0 2: expected survival no less than 6 months
 - Treatment with CLR 131 would not exceed life-time maximum exposure to radiation
- Modified to be even more refractory: triple-class/quad-class/post-BCMA immunotherapy

Iopofosine I 131 Multiple Myeloma Patient Characteristics

Characteristic	
Median Age (range)	68 (34 – 85)
Male – no. (%)	44 (61)
Median Time Since Diagnosis (range) - yrs	5 (1 – 22)
Median Bone Marrow Involvement (range) - %	46 (5 – 92)
ECOG performance-status score - no. (%) 0 1 2	29 (40) 39 (54) 4 (6)
High Risk cytogenetics – no. (%)	26 (36)
Median Prior Lines (range) Progression on last therapy – no. (%)	5 (2 – 17) 63 (88)
Previous Therapies: Exposed/Refractory Immunomodulator Drug Proteasome Inhibitor Anti-CD38 antibody BCMA Therapy	53/37 53/32 30/25 7/3

Waterfall Plot of All Multiple Myeloma Patients

(Best Response per IMWG Criteria)

Evaluation of Patients at Target Dose

Subset Analyses

Overall Response Rate in Patients receiving >60mCi Total Administered Dose (TAD)

Additional Efficacy-Related Patient Benefits

85.7% disease control

75% of patients experienced tumor volume reduction

Triple class refractory mPFS = 3.4m

Post-BCMA mPFS = 3.3m

lopofosine I 131: Well-Tolerated Safety Profile

Predictable and Manageable AE Profile

Conclusions

- Iopofosine I 131 is shows encouraging response rates and disease control in highly refractory multiple myeloma patients
 - Activity against all kinds of refractory patients
 - Importantly provides potential post-BCMA immunotherapy
- Iopofosine I 131 is well tolerated with cytopenic events being the dominate TEAE reported
 - Cytopenias are predictable
 - Cytopenias are manageable
 - Limited to no off-target effects
- Iopofosine I 131 is currently in a pivotal study in Waldenstrom's macroglobulinemia (rare hematologic cancer) and a Phase 1 in adolescents and young adults with high grade gliomas
 - Based upon this data, potential to expand into additional hematologic cancers
- Future evaluations
 - P53 mutation and impact on response
 - Expand quad-class refractory and post-BCMA immunotherapy cohorts

Acknowledgements

We would like to thank all of the patients, their families and the site staff participating in our clinical trials

