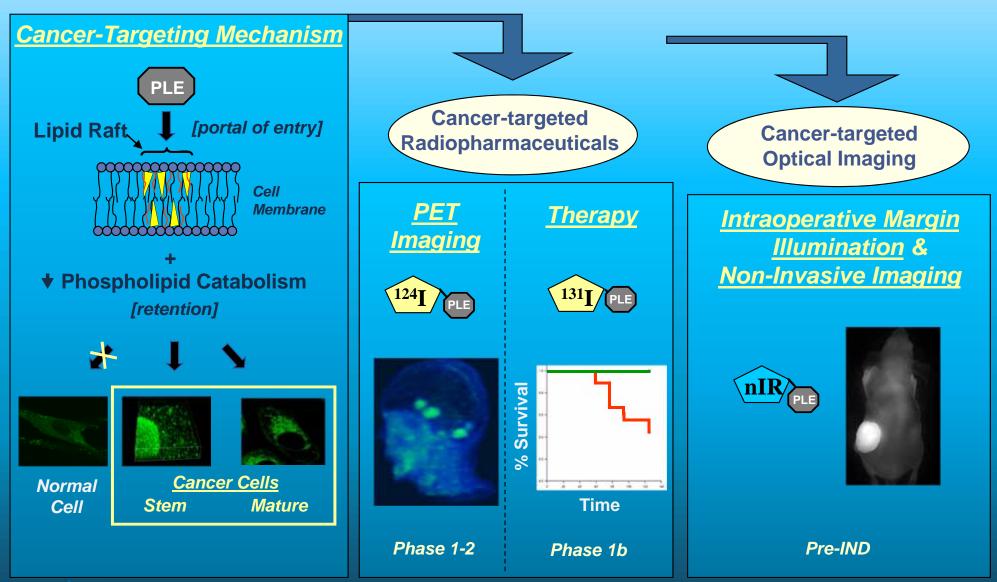


Cancer-Targeted Diapeutics

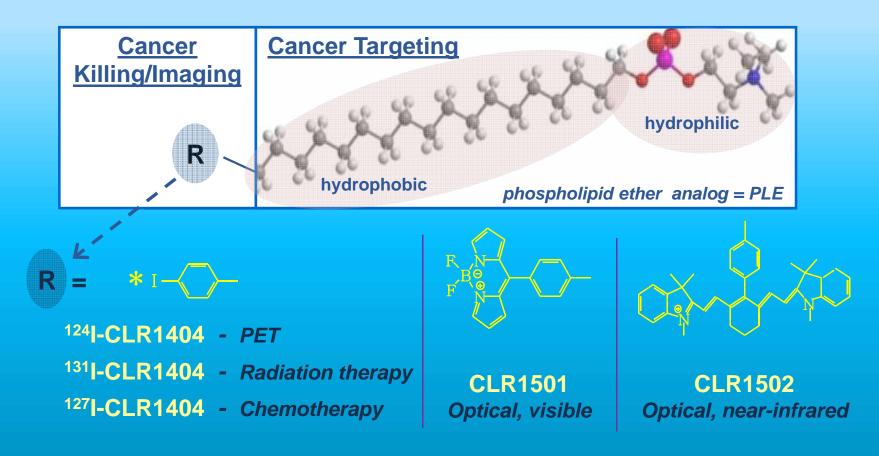
Radioiodinated Phospholipid Ether Analogs for **Broad-Spectrum Imaging and Therapy**

EMIT: Targeted Radiotherapy Conference


Washington, DC January 31, 2013

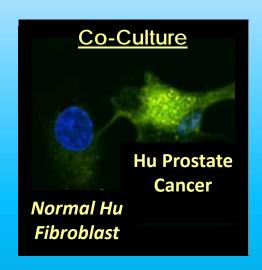
Cancer-Targeted Approaches: Desirable Features

- o Selective for cancer vs. normal cells/tissues
- Broad-spectrum targeting across/within cancer types
- Targets cancer stem cells and mature cancer cells
- Targeting vehicle can deliver a range of effectors (radioisotopes, chemo agents, imaging agents)
- Broad-spectrum efficacy across/within cancer types
- Cancer-targeting examples
 - Active targeting
 - mAbs/fragments; peptides, derivitized nanoparticles
 - Passive targeting
 - enhanced vascular permeability ("EPR-effect")
 - nanoparticles, liposomes

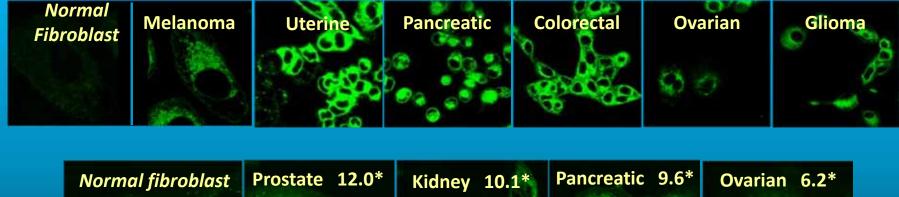


Cancer-Targeted, Broad-Spectrum, Multi-Product Technology Platform

Cancer-Targeting Technology Platform


- Proprietary PLE chemical scaffold derived from substantial exploration of cancer-targeting SAR (Pinchuk, et al. 2006, J Med Chem, 49:2155)
- Aryl iodine bond very stable (free iodine not released)
- Selective uptake and prolonged retention in cancer cells
 - Bulk tolerance in R position

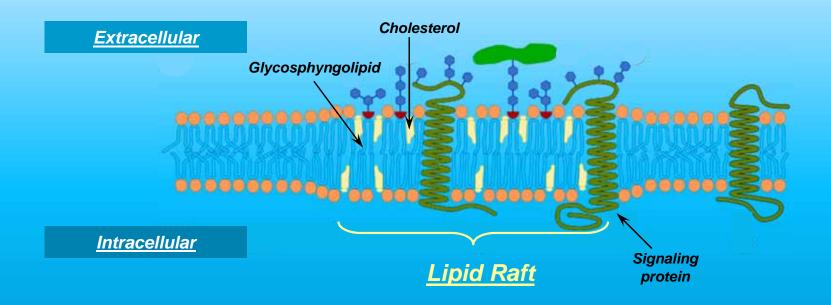
PLEs Selectively Target Cancer Cells


 PLEs accumulate in cancer vs. normal cells

(24 hr incubation)

Green = CLR1501

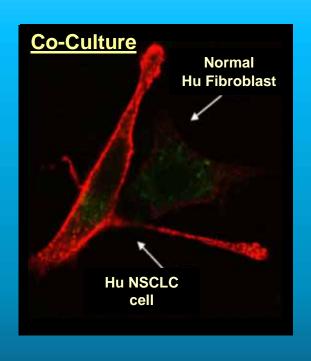
Blue = cell nucleus

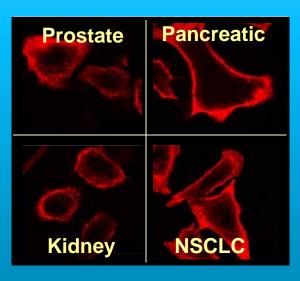


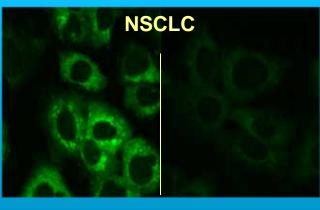
Nevelos

^{*} Fluorescent signal normalized to normal fibroblast (=1.0)

Lipid Rafts




- Lipid rafts are specialized microdomains of plasma membrane that are enriched in cholesterol and glycosphingolipids
- Lipid rafts serve as molecular platforms that spatially organize molecules for specific signaling pathways including those involved in <u>regulation of apoptosis</u> <u>and cell proliferation</u> (e.g. growth factor receptors, Akt, TNF receptors)



Lipid Rafts are Over-Expressed in Cancer Cells

 PLE uptake into cancer cells is, at least in part, dependent upon intact plasma membrane lipid rafts

(red = fluorescent-labeled cholera toxin subunit B)

Green = CLR1501

Reduced PLE Catabolism in Neoplastic Cells/Tissues May Contribute to Retention

<u>Tissue</u>	PLE Catabolic Activity a		
Rat Liver (normal)	7.3		
RatMorris Hepatoma 7794A		5.8	
RatMorris Hepatoma 7777		1.4	
Mouse Sarcoma 180		0.42	
Mouse Melanoma B-16		0.31	
Mouse Ehrlich Ascites Carcinoma		0.14	
Mouse KHZ Mam Tumor		0.11	
RatWalker-256		0.10	

<u>Cell/Tissue</u>	PLD b Protein c	PLD mRNA ^d	
Rat Liver (normal)	14.1	12.2	
Mouse CT26 colorectal	7.8	2.4	
Mouse hepa-1 hepatoma	3.3	6.2	
Mouse TS/A breast	2.8	4.0	

b PLD = phospholipase D

Expressed as μmol of PLE cleaved/20 min/mg protein
 Soodsma, Piantadosi, Snyder, <u>Cancer Research</u>, 30:309 (1970)

c mU fluorescence/µg protein/ml

 $^{^{\}rm d}$ µg x 10-5/0.01 µg total cDNA

PLEs Selectively Target a Wide Range of Malignant Tumors In Vivo

Yes Sele (52) 12

Selective Uptake & Retention of 124I-CLR1404

No (2)

Human cancer xenografts

Prostate

Non-small cell lung

Adrenal

Colon

Melanoma

Ovarian

Pancreatic

Renal Cell

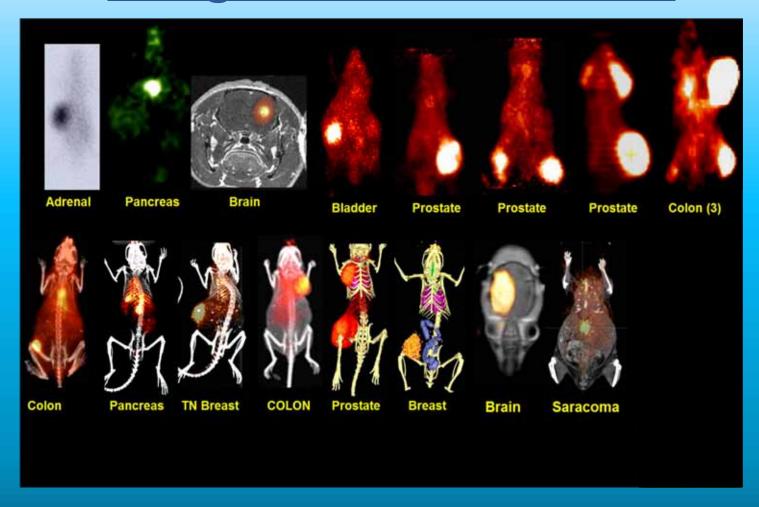
Prostate

Breast (triple-negative)

Rodent	malig	nant	<u>tumors</u>

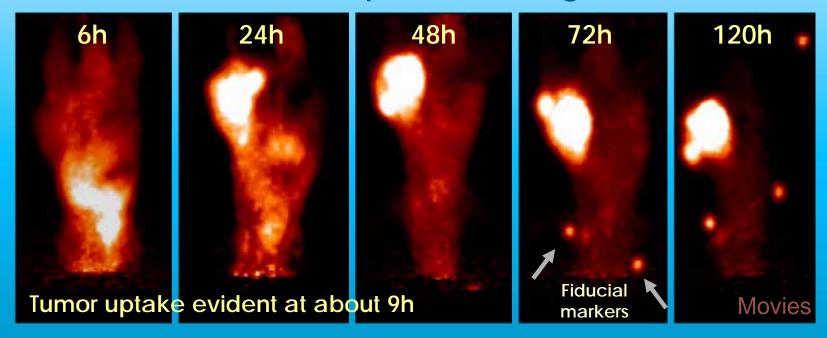
Breast	Glioma
Prostate *	Retinoblastoma
Colon	Pancreatic *
Intestinal *	Cervical *
Melanoma	Sarcoma
Mammary *	Esophageal *
Hepatocellular Carcinoma *	Hepatic

^{*} Includes transgenic tumor models

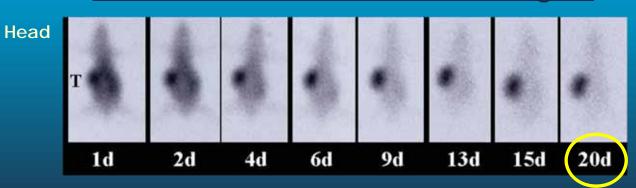

Mouse benign tumors

Intestinal polyp

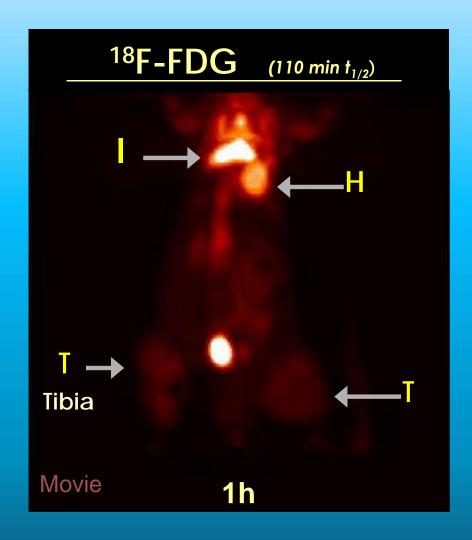
Mammary alveolar hyperplasia

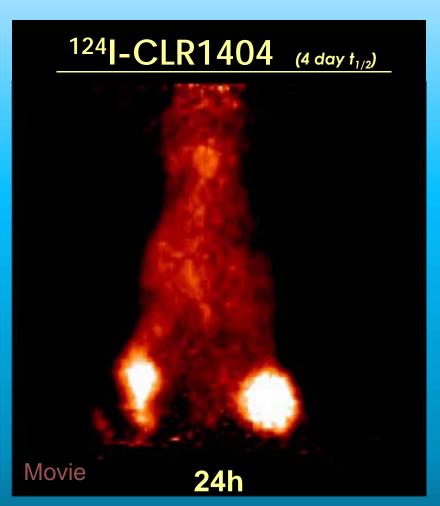

PLEs Selectively Target a Wide Range of Malignant Tumors In Vivo

Representative nuclear and/or microPET/CT or MRI hybrid images demonstrating excellent primary and metastatic tumor conspicuity. Images were acquired from 24-96h post-i.v. injection (80-140 μ Ci of ¹²⁴I-CLR1404) in a variety of human subcutaneous or orthotopic xenograft, spontaneously induced, or transgenic in vivo tumor models.

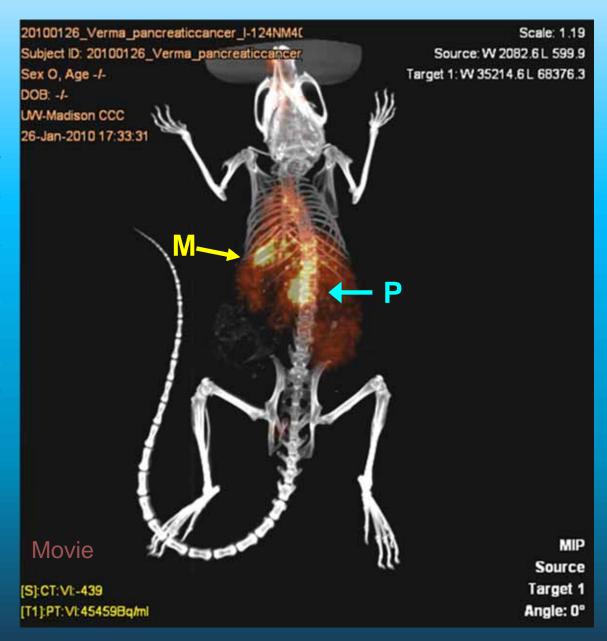

CLR1404 Tumor Uptake/Retention In Vivo

124I-CLR1404 - PC3 hu prostate xenograft (µPET scans)


Head

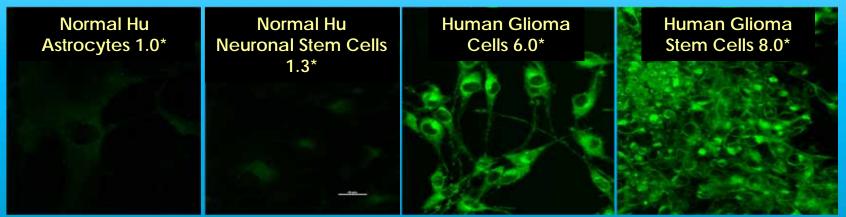

¹²⁵I-CLR1404 - 251 hu adrenal xenograft

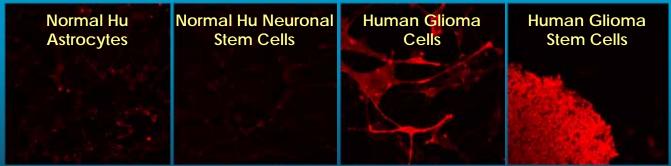
Unlike FDG, CLR1404 Does Not Accumulate at Sites of Inflammation


PC3 human prostate xenograft

I = carrageenan induced inflammatory lesion, <math>H = heart, T = tumors

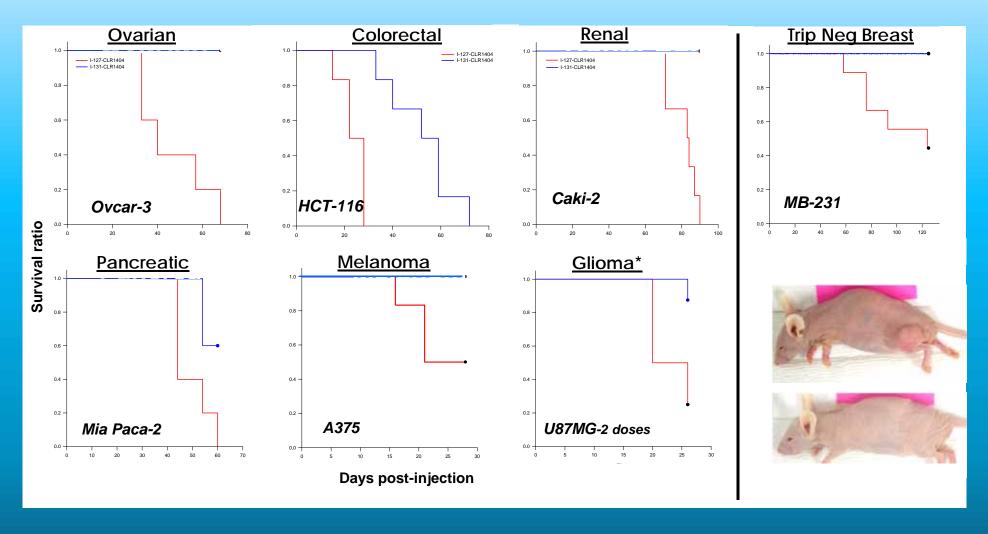
CLR1404 Targets Primary and Metastatic Tumors


3D Hybrid microPET/CT image of an anesthetized orthotopic BxPC3 pancreatic tumor-bearing Nude mouse 48h post iv administration of ¹²⁴I-CLR1404, The presence of the primary pancreatic tumor (P) as well as a spontaneous liver metastasis (M) is evident on the 3D scan. The presence of both tumors was verified at necropsy.



PLEs Target Cancer Stem Cells

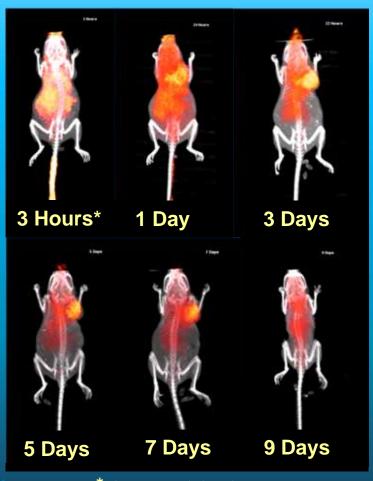
- Growing database implicates cancer stem cells in
 - Tumor growth, metastasis
 - Resistance to chemotherapy, radiotherapy
 - Cancer relapse


^{*} fluorescent signal normalized to normal human astrocyte (=1.0); Green = CLR1501

(red = lipid rafts; fluorescent-labeled cholera toxin subunit B)

131I-CLR1404 is Highly Efficacious in Mouse Xenograft Models

A single dose* of 131 I-CLR1404 (100 uCi, i.v., n=6 BLUE) was administered after tumors became established (~200 mm³ = Day 0). Control = 127 I-CLR140(0.19 mg/kg; n=6 RED)


The Diapeutic Cancer Treatment Paradigm

- A major goal of oncology today is to predict which patients will respond to a molecularly targeted drug
 - This is done by using biomarkers or imaging surrogates which are selective for the pathway or target of interest
 - Limitations of imperfect surrogates
- The PLE-based diapeutic treatment paradigm offers advantages over existing approaches
 - Chemically identical biomarker (124I-) and therapeutic (131I-)
 molecules (CLR1404) which are administered in ~ equal mass doses
 - PET/CT allows full-body, quantitative, 4-D mapping of biodistribution, and localization of primary tumors/metastases for diagnosis and disease staging
 - PET/CT based dosimetry may predict personalized therapy dose
 - Or no treatment if imaging shows suboptimal tumor or normal organ uptake

124/131 I-CLR1404 Diapeutic Paradigm

PET/CT time course of an LS180 colon CA xenograft-bearing mouse injected i.v. with a single injection of a mixture of ^{124,131}I-CLR1404 (200 µCi each). Tumor shrinkage confirmed by CT. Weight loss seen near the end of the study.

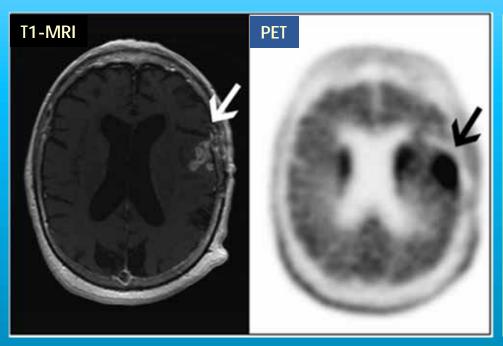
CLR1404 Platform - Clinical Studies

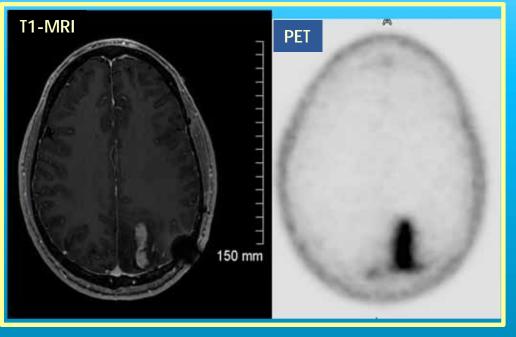
o 124I-CLR1404 PET imaging agent

- Ongoing Phase 1-2 trials in multiple tumor types
 - NSCLC, brain (primary and metastases), triple negative breast, soft tissue sarcoma, colorectal, gastric, esophageal, prostate, ovarian, pancreatic, and head & neck cancers

131I-CLR1404 molecular radiotherapeutic agent

- Phase 1a dosimetry trial successfully completed
- Phase 1b escalating dose, MTD-seeking, multi-site trial is ongoing
 - NSCLC, triple negative breast, soft tissue sarcoma, colorectal, gastric, esophageal, prostate and ovarian cancers



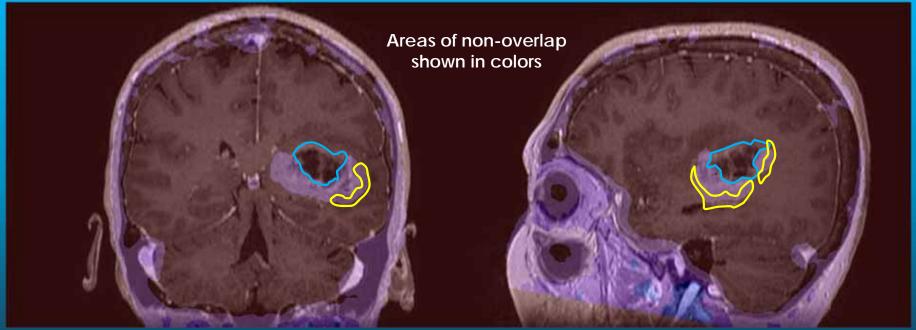

¹²⁴I-CLR1404 PET - NSCLC Brain Tumor Metastases

¹²⁴I-CLR1404 PET - Recurrent Glioblastoma

o 124I-CLR1404 PET image shows tumor to brain ratio of 30:1 (3-5 typically considered adequate in PET imaging)

¹⁸F-DOPA PET

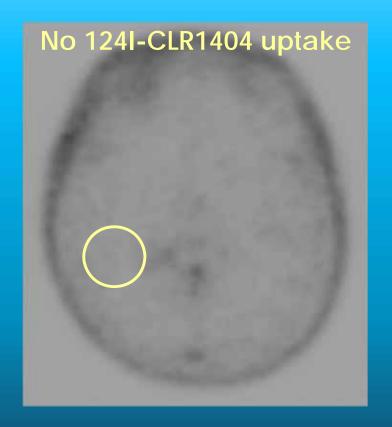
JNM Cover Image Walter F, et al, J Nuc Med, March, 2012, 53:393 124I-CLR1404 PET


48h post-5mCi dose

¹²⁴I-CLR1404 PET - Glioblastoma

- 124I-CLR1404 PET and MRI tumor images are only partially overlapping
- This could reflect more accurate imaging of living, malignant tissue by ¹²⁴I-CLR1404 PET compared to MRI (note: histopathology not performed on resected tumor)

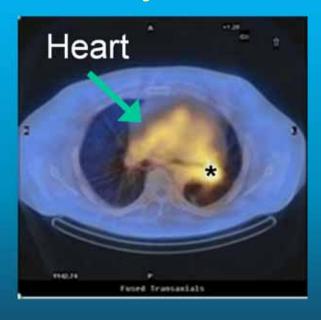
124 I-CLR1404 PET (48h post-5mCi dose)	MRI	Possible Interpretation
_	+	Necrotic tissue?
+	_	Malignant tissue?



¹²⁴I-CLR1404 PET – No Uptake in Glioma Scar Tissue

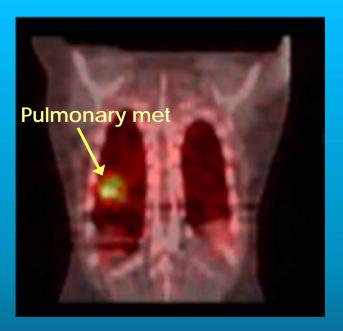
 124I-CLR1404 PET has the potential to differentiate growing tumor from pseudoprogression, enabling more timely and certain diagnosis

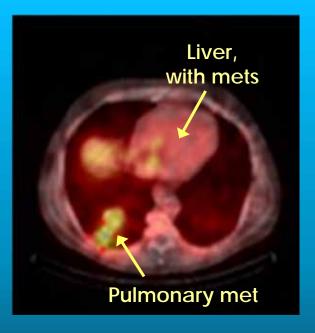
¹³¹I-CLR1404 PET – Targets Tumors in Man


- SPECT/CT images from Phase 1a dosimetry study (10 mCi, Day 6)
- Demonstrated uptake and prolonged retention of ¹³¹I-CLR1404 in cancerous tumors but not normal tissues

Prostate Cancer Metastases in Lumbar, Spine, Pelvis, Sacrum

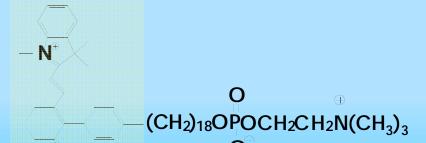
* = Tumor


Colorectal Cancer Pulmonary Metastasis

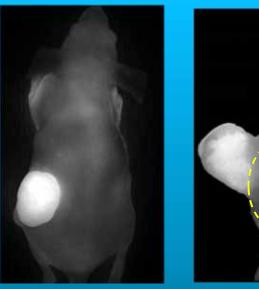


¹³¹I-CLR1404 PET – Targets Tumors in Man

- SPECT/CT images from Phase 1b MTD study (27 mCi, Day 21)
- Demonstrated uptake and prolonged retention of ¹³¹I-CLR1404 in cancerous tumors but not normal tissues



Colorectal cancer patient



<u>CLR1502</u> - Intraoperative Tumor Margin Illumination and <u>Non-Invasive Tumor Imaging</u>

Fluobeam TM (near-IR)

ve Tumor Imaging

Intraoperative Tumor Margin Illumination in Real Time

<u>Summary</u>

- Overabundant lipid rafts and deficits in PLE catabolism are believed to be involved in selective targeting of both differentiated cancer cells and cancer stem cells by PLEs
- As a consequence, PLE targeting of primary and metastatic tumors is broad-spectrum across a wide range tumor types
- o 124I-CLR1404 may have distinct advantages over 18F-FDG as a PET agent
- Selective and prolonged accumulation in human cancer has been routinely observed in imaging with¹³¹I-CLR1404 and ¹²⁴I-CLR1404 in initial clinical studies
- Significant therapeutic efficacy has been seen with ¹³¹I-CLR1404 in a wide range of xenograft models (tumor growth suppression and increased survival)
- Diapeutic pairing of ¹²⁴I-CLR1404 and ¹³¹I-CLR1404 may offer a truly individualized approach to cancer diagnosis, staging, therapy and efficacy assessment
- Optical imaging PLEs show early promise for intraoperative tumor margin illumination and diagnosis

Thank you!

Novelos Colleagues Jamey Weichert

Chris Blakley Maria Dawson Andrea Flaherty Patrick Genn Joe Grudzinski Kim Hawkins Jill Irwin **Angki Kandella** Jason Larrabee **Marc Longino Harry Palmin Anatoly Pinchuk Joanne Protano Dennis Tate** Abe Vaccaro **Brad Wallom**

UW Students and Faculty

Fred Lee
Perry Pickhart
Sharon Weber
Anne Traynor
Rock Mackie
John Kuo
Paul Clark
John Floberg
Mohammed Farhoud
Ben Durkee
Rich Halberg
Bill Dove

Clinical Trial Sites

Duke
Johns Hopkins
Georgetown
Univ Wisconsin

Univ Wisconsin

Carbone Cancer Center
Radiology
Medical Physics
Human Oncology
WARF
Clinical Trial Group

National Cancer Institute

UWCCC Grant
2 R21Grant (breast and lung)
1 RO1 Grant (glioma, brain mets)

Patient Volunteers

