

TAC-DSP-1750 FOG emcore®

The World's Smallest, High-Performance Single or Dual-Axis FOG

Available in single or dual axes

Key Features

- Superior bias stability of 0.05°/hr, 1 (typical)
- Single or Dual-Axis high performance FOGs
- 15 pin Molex connector
- Integrated heatsink
- Angle Random Walk (ARW) 0.013°/hr (0.8°/hr/Hz)
- Available in two configurations:
 - Unhoused single axis
 - Unhoused dual axis
- Commercial off-the-shelf (COTS) product
- Available with 6", 8", 10" flex circuits, or custom shape.
- Backwards compatible with legacy DSP-1750 hardware

Applications

- Gimbals
- Optical/antenna stabilization
- Long-range optical and sensor systems
- Equipment platform stabilization
- Payloads for UAVs
- Weapons platform stabilization
- GPS/INS, IMU integration

Engineered for the Tightest Spaces

EMCORE takes fiber optic gyro (FOG) technology to a new level of performance with the TAC-450 series based DSP-1750, the world's smallest high-accuracy FOG. Available in both single and dual-axis configurations, the TAC-DSP-1750 is designed for a wide range of precision navigation, stabilization, and pointing applications where low noise and high performance across the entire range of operating temperatures are critical. Ideal applications include long-range optical and sensor systems, gimbals, tactical missiles, autonomous vehicle navigation, and the stabilization of virtually all types of commercial equipment platforms.

Trusted for the Toughest Missions

The TAC-DSP-1750 delivers performance never before achieved in FOGs of similar size. Available in single or dual-axis gyro configurations, the TAC-DSP-1750 is a high bandwidth, extremely low noise sensor. The TAC-DSP-1750 integrates magnetic shielding within the gyro housing, providing improved performance in systems with problematic magnetic environments. It delivers extremely low noise coupled with high bandwidth.

PIC Technology Improves Reliability

A key element of the TAC-DSP-1750 is EMCORE's new, groundbreaking integrated planar optical chip. Replacing individual fiber optic components, the TAC-DSP-1750 with PIC Inside™ offers improved reliability, unit-to-unit repeatability, and easier integration. The result is a precision photonic fiber optic gyro sensor that is more durable, reliable, and for a high level of repeatability.

Precision Gyros Designed for Ultimate Flexibility

The TAC-DSP-1750 provides unmatched versatility to meet the demands of the most challenging design projects. Choose a single or dual-axis configuration, each employing the world's smallest precision FOG. All variants offer ease of use and high adaptability, featuring flexible communication options allowing for user-programmable data output rates up to 1000 Hz. This OEM package enables ease of integration into even the smallest of systems.

Ideal for the stabilization and orientation of high-speed gimbals.

Pipelines deliver massive amounts of crude daily and ensuring safe operation is key. The EMCORE TAC-450-DSP1750, coupled to additional sensors, provides these inspection robots with extremely accurate angular data.

Performance Specifications

Input Rate (max)	$\pm 490^\circ/\text{sec}$
Bias Instability (25°C)	0.05°/hr, 1σ (typical)
Bias vs. Temperature ($\leq 1^\circ\text{C}/\text{min}$)	3°/hr, 1σ (typical)
Bias Offset (25°C)	$\pm 2^\circ/\text{hr}$
Scale Factor Non-linearity (full rate, 25°C)	$\leq 200 \text{ ppm}, 1\sigma$ (typical)
Scale Factor vs. Temperature ($\leq 1^\circ\text{C}/\text{min}$)	$\leq 300 \text{ ppm}, 1\sigma$ (typical)
Angle Random Walk (25°C)	$\leq 0.013^\circ/\sqrt{\text{hr}} (\leq 0.8^\circ/\text{hr}/\sqrt{\text{Hz}})$
Bandwidth (-3 dB)	$\geq 440 \text{ Hz}$

Electrical/Mechanical Interface

Initialization Time	$\leq 5 \text{ seconds}$
Data Interface	Asynchronous RS-422
Baud Rate	115.2 Kbps
Data Rate	1000 Hz

Physical Specifications

Processor Dimensions	58.4 mm Dia x 12.22 mm H (2.3" x .481")
Gyro Sensor Dimensions	44.7 mm Dia x 21.7 mm H (1.76" x 0.86")
Weight - Processor	0.10 lbs (0.04 kg) NOMINAL
Weight – Gyro Sensor (nominal)	0.16 lbs (.072 kg)
Power Consumption	Single-axis: 4W (max), 3.2W (typical) Dual-axis: 5W (max), 4.1W (typical)
Input Voltage	+9 to +36 VDC

Environmental Specifications

Temperature (operating)	-40°C to +75°C (-40°F to +167°F)
Shock (operating)	30 g, 11 msec, sawtooth
Vibration (operating)	8 g rms, 20-2000 Hz, random

For detailed interface control drawings (ICD) and technical information on this product, please visit emcore.com/nav/support

For More Information

+1 866.234.4976 | emcore.com | navigation-sales@emcore.com

EMCORE Corporation
450 Clark Dr, Budd Lake, NJ U.S.A.
+1 626-293-3400 +1 626.293.3429

