Disclosures And Forward-Looking Statements

This presentation contains “forward-looking statements” within the meaning of the Private Securities Litigation Reform Act of 1995. Such statements include, but are not limited to, statements concerning Ocuphire Pharma, Inc.’s (“Ocuphire” or the “Company”) product candidates and future milestones, including the potential for Nyxol to be a “best in class” presbyopia drop. These forward-looking statements are based upon the Company’s current expectations and involve assumptions that may never materialize or may prove to be incorrect. Actual results and the timing of events could differ materially from those anticipated in such forward-looking statements as a result of various risks and uncertainties, including, without limitation: (i) timing or ability for the company to achieve its targeted milestones; (ii) the success and timing of regulatory submissions and preclinical and clinical trials; (iii) regulatory requirements or developments; (iv) changes to clinical trial designs and regulatory pathways; (v) changes in capital resource requirements; (vi) risks related to the inability of the Company to obtain sufficient additional capital to continue to advance its product candidates and its preclinical programs; (vii) legislative, regulatory, political and economic developments, and (viii) the effects of COVID-19 on clinical programs and business operations. The foregoing review of important factors that could cause actual events to differ from expectations should not be construed as exhaustive and should be read in conjunction with statements that are included herein and elsewhere, including the risk factors detailed in documents that have been and may be filed by the Company from time to time with the SEC. All forward-looking statements contained in this presentation speak only as of the date on which they were made. The Company undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made.

The Company makes no representation or warranty, express or implied, as to the accuracy or completeness of the information contained in or incorporated by reference into this presentation. Nothing contained in or incorporated by reference into this presentation is, or shall be relied upon as, a promise or representation by the Company as to the past or future. The Company assumes no responsibility for the accuracy or completeness of any such information. This presentation may not be reproduced or provided to any other person (other than your advisor) without our prior written consent. By accepting delivery of this presentation, you agree to the foregoing and agree to return this presentation and any documents related thereto and any copies thereof to us or to destroy the same if you do not make an investment in any securities. The information contain within this presentation shall not, except as hereinafter provided, without the prior written consent of the Company, be disclosed by you or your representatives in any manner whatsoever, in whole or in part, and shall not be used by you or your representatives other than for the purpose of evaluating the transaction described herein. By accepting delivery of this presentation you further acknowledge and agree you are aware of the restrictions imposed by the United States securities laws on the purchase or sale of securities by any person who has received material, nonpublic information from the issuer of the securities or any affiliate thereof and on the communication of such information to any other person when it is reasonably foreseeable that such other person is likely to purchase or sell such securities in reliance on such information for so long as the information remains material and non-public. This presentation also contains estimates and other statistical data made by independent parties and by us relating to market shares and other data about our industry. This data involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such estimates. The trademarks included herein are the property of the owners thereof and are used for reference purposes only. Such use should not be construed as an endorsement of such products.
Differentiated, Late-Stage Pipeline Targeting Large Unmet Ophthalmic Markets Of The Front And Back Of The Eye

- Nyxol with > 330 patients treated across 9 trials (505(b)(2) regulatory pathway)
- APX3330 with > 340 patients treated across 11 trials (NCE development pathway)
- Nyxol and APX3330 achieved promising clinical data and favorable safety profile across multiple Phase 1, 2, and 3 trials

Poised For Commercial Success

- Addressing 4 large markets with unmet needs: RM, Presbyopia, NVD and DR/DME
- Successful trial execution with 2 recent positive Phase 3 & Phase 2 data read-outs for Nyxol in RM and Nyxol + LDP Presbyopia, respectively
- Stable, small-molecule drugs with commercial scalability
- Robust and growing IP portfolio: US and global issued thru 2034 for both assets as well as new 2039 Nyxol patent issued for presbyopia

Multiple Value Creation Opportunities With A Capital-efficient Plan

- $24.5 million cash reported at 12-31-21 sufficient for operations into 2Q 2023
- Lower-cost, fast-enrolling, shorter-duration clinical trials
- Favorable, precedent regulatory environment for ophthalmic drug approval
- Analyst coverage by Cantor, Canaccord, Jones Trading, Alliance Global, and HCW

A Look Ahead Into 2022:

- Nyxol MIRA-3 trial for RM EARLY 2022
- Nyxol Pediatric trial for RM EARLY 2022
- Nyxol LYNX-1 trial for NVD EARLY 2022
- APX3330 ZETA-1 trial for DR/DME 2H22
- NDA Filing for Nyxol for RM LATE 2022

RM = Reversal of Mydriasis
NVD = Night Vision Disturbances
DR/DME = Diabetic Retinopathy/Diabetic Macular Edema

NASDAQ: OCUP

OCUPHIRE PHARMA
Large Unmet Opportunities For The Aging Eye

Nyxol® To Treat Front Of The Eye And APX3330 For The Back Of The Eye Diseases

Nyxol®

- **US Market Opportunity**: $9B - $18B
- **128 M Patients**

APX3330

- **Diabetic Retinopathy**
 - **US Market Opportunity**: $3B - $7B
 - **10 M Patients**

Refractive

- **100 M Patients**
 - **Reversal of Mydriasis**

- **16 M Patients**
 - **Night Vision Disturbances**

Retina

- **10 M Patients**
 - **Total**

- **Diabetic Macular Edema**
 - **US Market Opportunity**: $1B - $3B

Source: GlobalData Market Research Report, 2020; Company Estimates for Market Size
Ocuphire Pipeline & Clinical Milestones

Multiple Phase 3 & Phase 2 Clinical Data Readouts Anticipated Over The Next Year

<table>
<thead>
<tr>
<th>Product Candidate</th>
<th>Indication</th>
<th>Pre-clinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Regulatory Approval</th>
<th>Anticipated Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75% Nyxol® Eye Drop</td>
<td>Reversal of Mydriasis (RM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MIRA-3 Phase 3 data expected in early 2022 (n=330)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MIRA-4 Pediatric safety study data expected in early 2022 (n=20)</td>
</tr>
<tr>
<td>0.75% Nyxol® + Low-Dose 0.4% Pilocarpine Eye Drops</td>
<td>Presbyopia (P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• VEGA Phase 3 program initiated in 1H22 (n=300x2)</td>
</tr>
<tr>
<td>0.75% Nyxol® Eye Drop</td>
<td>Dim Light or Night Vision Disturbances (NVD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• LYNX-1 Phase 3 data expected in early 2022 (n=140)</td>
</tr>
<tr>
<td>APX3330 Oral Pill</td>
<td>Diabetic Retinopathy (DR)/Macular Edema (DME)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• ZETA-1Phase 2 data expected in 2H22 (n=90)</td>
</tr>
<tr>
<td>APX2009 (Intravitreal or Local Delivery)</td>
<td>DME or Wet Age-Related Macular Degeneration (wAMD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Seeking partner funding for IND enabling studies and further development</td>
</tr>
</tbody>
</table>

Note: 0.75% Nyxol (Phentolamine Ophthalmic Solution) is the same as 1% Nyxol (Phentolamine Mesylate Ophthalmic Solution)
Nyxol MOA & History

Phentolamine Mesylate Reformulated As A Proprietary Topical Eye Drop ➔ Nyxol

Phentolamine Mesylate is Active Ingredient in Nyxol: α1 & α2 Antagonist

<table>
<thead>
<tr>
<th>Blocking α1</th>
<th>Blocking α1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduces Pupil Size</td>
<td>Dilates Blood Vessels</td>
</tr>
</tbody>
</table>

Nyxol blocks α1 receptors on the Iris Dilator Muscle
↓ Decreases Pupil Size (Moderate Miosis)

Phentolamine mesylate is currently approved for 2 indications:

- Regitine® (Pheochromocytoma) – intravenous injection approved in 1952
- OraVerse® (Reversal of oral anesthesia) – intramuscular injection approved in 2008

Phase 1, Phase 2, and Phase 3 Trials: > 330 Subjects Dosed
Exposure in Humans: 28 Days
Patent Coverage: 2034+

505(b)(2) Regulatory Approval Pathway
Nyxol Product Candidate Profile

Novel, Differentiated Alpha 1/2 Blocker Eye Drop For Refractive Indications

<table>
<thead>
<tr>
<th>Effective</th>
<th>Favorable Safety Profile</th>
<th>Durable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyxol Improves Vision by Decreasing Pupil Size (about 20-25%)</td>
<td>No Systemic Effects</td>
<td>Effects Last ≥ 24 Hours</td>
</tr>
<tr>
<td>↑ Near & Distance Visual Acuity</td>
<td>No Changes in Blood Pressure</td>
<td>Chronic daily dosing of Nyxol at bedtime reduced pupil size for up to 24 - 36 hours</td>
</tr>
<tr>
<td>↑ Contrast Sensitivity (night)</td>
<td>No Changes in Heart Rate</td>
<td>With nighttime use, patients wake up without eye redness</td>
</tr>
<tr>
<td>Well-Tolerated Topical Effects</td>
<td>IOP Unchanged or Decreased</td>
<td></td>
</tr>
<tr>
<td>Mild, Transient, Reversible Eye Redness</td>
<td>No Headaches</td>
<td></td>
</tr>
<tr>
<td>IOP Unchanged or Decreased</td>
<td>Favorable safety profile vs competitors</td>
<td></td>
</tr>
<tr>
<td>Nyxol: 0.75% Phentolamine Ophthalmic Solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preservative Free, EDTA Free, and Stable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nyxol Clinical Trials

Favorable safety profile vs competitors

Effective

Nyxol: 0.75% Phentolamine Ophthalmic Solution
Preservative Free, EDTA Free, and Stable

Effects Last ≥ 24 Hours

Chronic daily dosing of Nyxol at bedtime reduced pupil size for up to 24 - 36 hours

With nighttime use, patients wake up without eye redness
I have to stay indoors. They say it only lasts a few hours, but it lasts all day, and it is very annoying.

RM Patient, Age 51
Reversal Of Mydriasis (RM) Market Opportunity
With No Commercially Available Treatment, Nyxol May Achieve Significant Revenue Potential

The Problem

• At many annual eye exams and specialty visits, pupils are pharmacologically dilated, impairing vision for 6-24 hours

• Dilated eyes:
 – heightened sensitivity to light
 – inability to focus
 – reading, working, and driving are difficult
 – halos and glare

100M+
General and specialty eye exams per year

> 65% of Patients
Report moderate to severe negative impact of dilated exams

80% of Patients
Likely to request a reversal of dilation drop

$10 - $20
Price range for cash pay per patient with room for physician markup

95% of Dilating Drops
Used by Eye Care Providers were used in MIRA Clinical Trials

No Current Commercially Available Treatments

Nyxol's MOA has a minimal side effect profile (unlike cholinergic agonists such as pilocarpine)

$325M - $1B
Estimated US RM Market Opportunity

1. GlobalData Market Research Report
2. GlobalData Market Research Report, 2020 – percentage includes those who answered moderately to highly likely (4-7 on a scale of 1-7).
3. GlobalData Market Research Report, 2020 – percentage includes those who answered moderately to highly likely (6-10 on a scale of 0-10)
MIRA-2/3 Phase 3 Registration Trial Design

Randomized, Double-Masked, Placebo-Controlled, Parallel, One-Day Trial

12 to 16 US sites
185 to 330 target healthy subjects

1:1
2:1

Mydriasis - 1 Hour
Mydriasis

1:1

Mydriatic Agent A, B, or C

Nyxol drop(s)
(2 drops study eye, 1 drop fellow eye)

Follow Up Visit

Primary Endpoint

Treatment (Max Dilation)
0 min

Mydratic Agent A, B, or C

Placebo drop(s)
(2 drops study eye, 1 drop fellow eye)

Placebo

Enrollment MIRA-3 Started in 4Q21

Mydriatic Agents 3:1:1 – 2.5% phenylephrine (alpha-1 agonist), 1% tropicamide (cholinergic blocker), Paremyd® (combination)

Endpoints

Primary: % of subjects (study eye) returning to baseline (within 0.2 mm) photopic pupil diameter (PD) at 90 min

Secondary:
- % of subjects returning to baseline at 0min, 30min, 1h, 90 min 2h, 3h, 4h, 6h, 24h (overall, by mydriatic agent, by iris color)
- Mean change in pupil diameter at all timepoints
- Accommodation (Tropicamide/Paremyd)
- Visual Acuity with Glare (new)
- Pupillary Light Reflex (new)
- Safety and tolerability (redness)

Topline Results Expected in Early 2022
MIRA-2 RM Phase 3 Trial Met Primary & Secondary Endpoints

49% Of Patients Returned To ≤ 0.2mm Of Baseline At 90mins Vs. 7% Placebo

Source: MIRA-2 Trial, mITT Population (same as Safety Population), *Data includes all three mydriatics (Phenylephrine, Tropicamide, Paremyd)

Nyxol Reduced More Subjects to Baseline Pupil Diameter (PD)

<table>
<thead>
<tr>
<th>Time Post-Treatment with Nyxol/Placebo (Hours)</th>
<th>Placebo n=91</th>
<th>Nyxol n=94</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3%</td>
<td>28%</td>
</tr>
<tr>
<td>1</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>1.5</td>
<td>7%</td>
<td>49%</td>
</tr>
<tr>
<td>2</td>
<td>11%</td>
<td>59%</td>
</tr>
<tr>
<td>3</td>
<td>18%</td>
<td>80%</td>
</tr>
<tr>
<td>4</td>
<td>30%</td>
<td>82%</td>
</tr>
<tr>
<td>6</td>
<td>45%</td>
<td>90%</td>
</tr>
</tbody>
</table>

*p<0.0001

Nyxol Reduced PD Faster Across All Mydriatic Agents*

<table>
<thead>
<tr>
<th>Time Post-Treatment with Nyxol/Placebo (Hours)</th>
<th>Nyxol (n=94)</th>
<th>Placebo (n=91)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Max pupil dilation, Treatment</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>p<0.0001</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>1.5</td>
<td>p<0.0001</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>2</td>
<td>p<0.0001</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>3</td>
<td>p<0.0001</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>4</td>
<td>p<0.0001</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>6</td>
<td>p<0.0001</td>
<td>p<0.0001</td>
</tr>
</tbody>
</table>

*Data include all three mydriatics (Phenylephrine, Tropicamide, Paremyd)
Summary Of Positive MIRA-2 Phase 3 Results For Nyxol Eye Drops

Rapid Efficacy With A Favorable Safety Profile In Reversing Mydriasis With Nyxol

- Met primary endpoint at 90 minutes with high statistical significance with 2 and 1 drop of Nyxol
- Met all key secondary endpoints with high statistical significance
 - Nyxol more rapidly reduced PD across all 3 mydriatic agents - phenylephrine, tropicamide, and Paremyd®
 - More subjects returned to PD baseline with Nyxol in both light and dark irides
 - Nyxol demonstrated a faster return to baseline accommodation
 - Nyxol reduced the dilation time by ~4 hrs

- No serious AEs, no drop-outs from AEs, no systemic AEs were observed in ≥ 5% of subjects
- Mild, transient conjunctival hyperemia reported in the first hour and declined steadily thereafter. Baseline mean of 0.7, the mean hyperemia score increased by approximately 1.0 unit on CCLRU scale
NDA Submission Targeted In Late 2022
Ongoing Activities Sets Ocufhile On Path To A Potential Regulatory Approval In 2023

Target Label Indication
The treatment of pharmacologically induced mydriasis produced by adrenergic (e.g. phenylephrine) or parasympatholytic (e.g. tropicamide) agents, or a combination thereof.

P3 Clinical Trial
Complete a 2nd Phase 3 trial in RM with ~330 subjects which also meets 24-hour safety population exposure

Pediatric Safety
Complete RM trial with 20 subjects ages 3 to 11 per agreed FDA initial pediatric plan

Manufacturing
Complete 3 registration batches on 1-year CMC stability

Regulatory Approval
Submit NDA by Late 2022

5 single unit dose vials pack

Nyxol®
Pre-Commercial & Go-To-Market Strategy

Activities Underway To Support Capital-Efficient Nyxol RM Commercial Launch

Market Development

Engage leading Key Opinion Leaders and Professional Societies to establish OCUP as an emerging company to address unmet needs in the front and back of the eye disorders.

Patient Journey

Establish Ocuphire as a patient-centric company and leader in ocular health through education and patient access programs (also using digital and social media marketing).

Ocuphire Go-To Market

Evaluating commercial sales and distribution partner(s).

Physician Targeting

Conduct HCP segmentation and targeting to drive early adoption and capture post-market data and patient experience.

Brand Awareness Across Eye Care Professionals

Initiate branded and unbranded education for ophthalmologists, optometrists and practice professionals.

Eye Care Practitioners in U.S.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Retina Specialists</td>
<td>3,000</td>
</tr>
<tr>
<td>Total Optometrists</td>
<td>46,000</td>
</tr>
<tr>
<td>Total Ophthalmologists</td>
<td>20,000</td>
</tr>
</tbody>
</table>

ASRS; AMA; AAO; Women in Optometry (WO); AOA Excel and Jobson Medical Information
NYXOL® for PRESBYOPIA

“By Age 45, 80% of Americans will struggle with Presbyopia, and by age 50, nearly everyone will.”

NY Times
2021: The Time For Presbyopia Drops

Headlines From Academia And Industry Articles Thru The Year With An Early First Approval

“The correction of presbyopia remains ophthalmology’s ‘Holy Grail’…”

-OIS

Sources: Academic review articles, journals, and publications
Presbyopia Is A Burgeoning Opportunity

Large Market Being Developed, Pupil Modulation Eye Drops May Replace Reading Glasses

The Problem

- Lens loses ability to change shape when viewing objects up close as we age
- Dependence on reading glasses for intermittent and prolonged use
- Growing need for therapies that improve, rather than hinder, quality of life

VUITY™ is the only FDA approved Eye Drop, Launched in Dec 2021

Significant room for improvement for new entrants with better product attributes in a newly developed presbyopia eye drop market

Product Profile: Nyxol® + Low-Dose Pilocarpine (LDP) Combo

Moderate Action On Iris Dilator And Iris Sphincter Muscles For Near Vision Improvement

0.75% Nyxol

- Phentolamine (alpha1/2 antagonist)
- Novel MOA on iris dilator with 24+ hour durability
- Moderate 1+mm pupil reduction
- No daytime redness
- Well-tolerated with no systemic effects
- Stable, preservative-free, single-use vial

0.4% LDP

- Pilocarpine (cholinergic agonist)
- Known MOA on sphincter muscle with potent miotic effects at approved doses (1%, 2%, 4%)
- Low concentration avoids known tolerability issues:
 - headache and browache
 - redness
 - accommodative spasm causing loss of distance vision especially at night

1.5 to 2.5 mm PD reduction moves toward the pin-hole (2 to 2.5 mm, up to 3 mm)

Source: 1) Nyxol® data from 9 completed trials; Pilocarpine Product label and Literature
Presbyopia VEGA-1 Phase 2 Design

Randomized, Double-Masked, Placebo-Controlled, Multi-Center One-Week Trial

Primary:
- % of subjects with \(\geq 3 \) lines of improvement in distance-corrected near visual acuity comparing Nyxol + LDP vs placebo alone at 1 hour

Secondary:
- % of subjects with \(\geq 2 \) and \(\geq 3 \) lines gained at time points from 30 min to 6 hours in photopic lighting comparing Nyxol + LDP vs placebo, Nyxol alone, and LDP alone
- No loss of distance vision
- Pupil diameter at time points
- Safety and tolerability (redness)

Endpoints

VEGA-1

Visit 1	Evening Dosing (3-4 doses)	Visit 2 (3 – 6 Days Later)	Treatment Arms
Baseline | Nyxol | LDP Drop | Nyxol + LDP
Baseline | Nyxol | No Treatment | Nyxol Alone
Baseline | Placebo | LDP Drop | LDP Alone
Baseline | Placebo | No Treatment | Placebo Alone

4 arms

17 US sites

150 presbyopic patients

0.75% Nyxol

Placebo

Randomization
Screening

Eligibility Criteria

- Males or females \(\geq 40 \) and \(\leq 64 \) years of age
- BCDVA of 0.0 LogMAR (20/20 Snellen equivalent) or better in each eye under photopic conditions
- DCNVA of 0.4 LogMAR (20/50 Snellen equivalent) or worse in photopic conditions in each eye & binocularly

Phase 2 Enrollment Completed Feb to May 2021 – 150 Subjects Reported Topline Results End of 2Q21

Clinical trial NCT#04675151. DCNVA = distance-corrected near visual acuity. BCDVA = best corrected distance visual acuity
VEGA-1 Phase 2 Trial Met Primary & Secondary Endpoints

Nyxol + LDP Had Strong Response With ≥ 15 Letter Near Gain From 30 Minutes To 6 Hours

Table 14.2.1.2 Percent of Subjects with Improvement From Baseline in Photopic DCNVA by Time Point (PP Population). 15 letters is 3 lines.

Note: PP population differs from mITT by only one subject; results were essentially identical.

Source: VEGA-1 TLR Table 14.2.1.2 Percent of Subjects with Improvement From Baseline in Photopic DCNVA by Time Point (PP Population). 15 letters is 3 lines.
Secondary Endpoints: Improved DCNVA Without BCDVA Loss

Pre-Specified Endpoints Further Demonstrate Nyxol’s Component Efficacy & 10 Letter Effects

VEGA-1 Phase 2 Trial

≥ 15 Letter Gain In Near & < 5 Letter Loss In Distance at 30 Minutes

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n=43)</th>
<th>Nyxol+LDP (n=44)</th>
<th>Nyxol (n=30)</th>
<th>LDP (n=31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Subjects (%)</td>
<td>14%</td>
<td>61%</td>
<td>33%</td>
<td>26%</td>
</tr>
<tr>
<td>p</td>
<td>0.015</td>
<td>0.03</td>
<td>0.03</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Even with a small sample size, combination arm provided statistically meaningful results vs. LDP and Nyxol alone arms

≥ 10 Letter Improvement in DCNVA at 30 Minutes*

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n=43)</th>
<th>Nyxol+LDP (n=44)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Subjects (%)</td>
<td>51%</td>
<td>77%</td>
</tr>
<tr>
<td>p</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>

* Trend seen at other assessed timepoints

Source: VEGA-1 TLR Table 14.2.2.2 Percent of Subjects with >= 15 Letters of Improvement in Photopic DCNVA and < 5 Letters of Loss in Photopic Binocular BCDVA by Time Point (PP Population); Table 14.2.1.2 Percent of Subjects With Improvement From Baseline in Photopic DCNVA by Time Point
Secondary Endpoint: Mean Pupil Diameter Over Time
Achieved Pupil Size ~2mm In Nyxol+LDP Consistent With 3-line Improvement In Near Vision

Source: VEGA-1 TLR

Table 14.2.12.1 Observed Values and Change from Baseline in Photopic Pupil Diameter by Time Point (PP Population)

Pupil Diameter Over Time Graph

- Placebo (n=43)
- Nyxol+LDP (n=43)
- Nyxol (n=30)
- Placebo + LDP (n=31)

Statistical Significance:

- **p<0.01**
- ***p<0.0001

Daily Evening Nyxol Dosing 12 hr minimum interval to Time 0

Nyxol+LDP arm statistically significant compared to all arms

Source: VEGA-1 TLR Table 14.2.12.1 Observed Values and Change from Baseline in Photopic Pupil Diameter by Time Point (PP Population)
Summary Of Positive VEGA-1 Phase 2 Results

Nyxol + LDP Had Strong Efficacy Response & Well Tolerated Safety Profile

- Met primary endpoint with statistical significance at 1 hour with Nyxol® plus Low-Dose Pilocarpine (LDP)
- Met key secondary endpoints with statistical significance
 - Gained 15 letters (3 lines) in near vision with less than 5 letters of distance vision loss at all timepoints vs. placebo and select timepoints for components
 - Rapid onset of efficacy within 30 mins
 - Durable near vision improvement through at least 6 hours
 - Sustained significant reduction in pupil diameter for at least 18 hours
 - Near vision efficacy seen both monocularly and binocularly
 - Efficacy in both light and dark irides

- No serious AEs, almost all AEs were mild
- No headaches, no brow aches, and no blurry vision AEs were reported
- No material change in distance vision under photopic and mesopic lighting
- No change in IOP
- Mild, transient conjunctival hyperemia (eye redness) observed in <5% of subjects
Potential ‘Best in Class’ Presbyopia Drop

Nyxol+LDP Combination Data Outperforms In Efficacy, Safety, Durability And Onset

Nyxol's Potential Differentiated Solution

<table>
<thead>
<tr>
<th>Product Attributes*</th>
<th>Nyxol+LDP</th>
<th>VUITY™</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Efficacy (3 Line Gain in DCNVA - Primary Endpoint Responders)</td>
<td>61%</td>
<td>26-31%</td>
</tr>
<tr>
<td>2a) Safety: Loss of Distance in Mesopic</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2b) Safety: Tolerability</td>
<td>No Headaches</td>
<td>>5% Headaches</td>
</tr>
<tr>
<td>2c) Safety: Conjunctival Hyperemia</td>
<td><5% redness</td>
<td>>5% redness</td>
</tr>
<tr>
<td>3) Durability (responders at 6 hours)</td>
<td>37%</td>
<td>18%</td>
</tr>
<tr>
<td>4) Fast Onset (responders at 30 mins)</td>
<td>61%</td>
<td>35%</td>
</tr>
</tbody>
</table>

Differences in cross trial comparisons are not necessarily statistically significant. Nyxol Data: ASCRS (July 2021) Abstract# 76645 (Phase 2) and 74336 (Phase 3). VUITY™ Data: FDA Label and AAO 2021 Presentation.
Presbyopia Eye Drops Competitive Landscape
Validation of Pupil Modulating Drops Achieving Pin-Hole Effect & Efficacy, Many With Pilocarpine

- **Phase 1**
 - **Orasis** (CSF-1; Low dose pilo)
 - **Visus** (Brimochol®; brimonidine + carbachol)
 - **Novartis** (EV-06)
- **Phase 2**
 - **Lenz** (PRX-100; aceclidine)
 - **VUITY** (1.25% pilo)
 - **Orasis** (CSF-1; Low dose pilo)
 - **Allergan** (VUITY™; 1.25% pilo)
 - **Novartis** (EV-06)
- **Phase 3**
 - **Eyenovia** (MicroLine; 1 or 2% pilo)
 - **Ocuphire** (0.75% Nyxol + 0.4% pilo)

Other Cholinergic Agonists

- **Alpha Antagonist & pilocarpine**
 - **Lenz** (PRX-100; aceclidine)
 - **Allergan** (VUITY™; 1.25% pilo)
 - **Visus** (Brimochol®; brimonidine + carbachol)

Combination drugs

- **Cholinergic Agonist** (pilocarpine)
 - **Visus** (Brimochol®; brimonidine + carbachol)
 - **Visus** (Brimochol®; brimonidine + carbachol)

Pupil modulation MOA

Soften lens MOA

*act on sphincter and ciliary muscles in dose-dependent manner

Ocuphire is differentiated by using both the dilator and sphincter muscles moderately to reach a pin-hole pupil size

Nyxol Next Steps

- Advance into Phase 3 Presbyopia Registration Trials (1H22)
- Potential NDA Submission (2023)
I’m no longer comfortable driving at night, especially with my son in the car. I have a hard time playing beach volleyball in the evenings due to the bright lights at the courts.

Post-LASIK, Age 42
Market Opportunity In Dim Light Or Night Vision Disturbances

No Approved Treatments With Ripe Opportunity For Growth

The Problem

- Peripheral imperfections scatter light when pupils enlarge in dim light, causing halos, starbursts, and glare that impair vision
- The imperfections may be caused by LASIK surgery, IOL implants, certain types of cataracts (cortical), and natural reasons (especially with age)
- Symptoms cannot be properly corrected by any type of lens (reading glasses, contact lenses) or surgical procedures

No Approved Treatments

Pupil reduction with Nyxol may offer a potential solution to peripheral optical imperfections

Moderate-Severe NVD ~16 M

- Night Myopia 11 M
- Cortical Cataracts 4 M
- Post-Lasik 0.5 M
- Post-IOL Implant 0.3 M

$2B - $4B

Estimated US NVD Market Opportunity

Source: GlobalData Market Research Report, 2020
NVD LYNX-1 Phase 3 Registration Design

Ongoing Randomized, Double-Masked, Placebo-Controlled Two-Week Trial

LYNX-1

- 20 US sites
- 140 - 160 patients with NVD

Endpoints

Primary: % of subjects with \(\geq 3 \) lines of improvement in mesopic low contrast best-corrected distance visual acuity (Day 8)

Secondary (Days 8 & 15):
- Pupil diameter
- Visual acuity measures (distance and near)
- Safety and tolerability (redness)

Phase 3 Initiated in Dec 2020; Completed Enrollment Jan 2022

Top Line Expected Early 2022
Nyxol Demonstrated Clinical Effect In NVD

Key Endpoints Observed In Multiple Phase 2 Trials

NYX-SNV Phase 2 Trial

Improved Low Contrast Distance Visual Acuity*

% of Eyes with Mesopic Low Contrast Visual Acuity Improvement

<table>
<thead>
<tr>
<th>Condition</th>
<th>Placebo (%)</th>
<th>Nyxol (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1 line</td>
<td>69%</td>
<td>31%</td>
<td>0.029</td>
</tr>
<tr>
<td>≥ 2 lines</td>
<td>6%</td>
<td>34%</td>
<td>0.04</td>
</tr>
<tr>
<td>≥ 3 lines</td>
<td>19%</td>
<td>0%</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Source NYX-SNV

ORION-1 Phase 2 Trial

Durable > 24-hour Pupil Modulation Effect

Pupil Diameter Change from Baseline in Mesopic Conditions (Study Eye)

Baseline Pupil Diameter: Placebo 4.6mm, Nyxol 4.7mm

<table>
<thead>
<tr>
<th>Day 8</th>
<th>Day 15</th>
<th>Day 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.99 -20%</td>
<td>-1.00 -21%</td>
<td>-0.88 -19%</td>
</tr>
</tbody>
</table>

Source: NYXG-201

*NYX-SNV trial was small and not designed for a statistical 3-line improvement in low-contrast visual acuity; the ~20% effect was used for powering and sizing of Phase 3 trial
APX3330 TABLETS

- **DR**: Diabetic Retinopathy
- **DME**: Diabetic Macular Edema
Diabetic Retinopathy & Macular Edema

Oral Alternatives To Injectable Therapies Are Needed For Earlier Stages Of Disease

The Problem

- **Diabetic retinopathy (DR) and diabetic macular edema (DME)** are a leading cause of vision loss worldwide.

- Diabetes damages small blood vessels within the eye causing leakage, oxygen starvation, and abnormal vessel growth.

- **DR patients are not routinely treated with approved injectable anti-VEGF drugs**
 - DR progresses resulting in vision loss.

- **Current treatment for DME are not satisfactory**
 - 25% non-responders
 - 50% partial responders to anti-VEGF drugs.

Large, Unmet Need in Diabetic Eye Diseases (US)

<table>
<thead>
<tr>
<th></th>
<th>DR</th>
<th>DME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>~7.7M Patients</td>
<td>~750K Patients</td>
</tr>
</tbody>
</table>

Limited Retinal Treatment Options for Diabetic Patients

Estimated US DME Market Opportunity: $1B - $3B

Estimated US DR Market Opportunity: $3B - $7B

APX3330: Drug Development History And Patents

Significant Preclinical & Clinical Data Supporting Human Safety, MOA, and PK

11 Phase 1 & Phase 2 Trials

>340 Subjects Dosed

Exposure in Humans 365 Days

Patent Coverage 2034+

APX3330 New Chemical Entity

Preclinical Efficacy & Toxicology Package

APX3330 IND

6 Phase 1 Trials

5 Phase 2 Trials

Phase 2b Trials

Phase 3 Registration

NDA Filing

Studied in inflammation/hepatitis & cancer patients
(Studied by Eisai & Apexian, respectively)

Focus on Ophthalmology

DR

DME
APX3330 History And Ref-1 Inhibition Mechanism

Ref-1 Involved In Multiple Key Pathways That Contribute To Diabetic Retinopathy and DME

- Ref-1 (reduction-oxidation effector factor-1) is a novel target discovered by Dr. Mark R. Kelley at Indiana University School of Medicine
- APX3330 is a small molecule oral drug candidate and a first-in-class inhibitor of Ref-1
- APX3330 previously developed by Eisai for multiple hepatic inflammatory indications and later by Apexian for advanced solid tumors
 - Similar oncology origin as approved anti-VEGFs
- MOA uniquely decreases both abnormal angiogenesis and inflammation by blocking pathways downstream of Ref-1
APX3330 Down-Regulates VEGF Protein And Anti-Inflammatory Cytokines

In Vivo And In Vitro Evidence Of APX Dual Pathway Mechanism Of Action

APX3330 Reduces VEGF Protein in the Brain of Preclinical Models

- Treatment of APX3330 (10mg/kg, oral gavage) in rats with type 1 diabetes and induced stroke shows a significant decrease of VEGF signaling.
- Increased VEGF is a hallmark of uncontrolled neovascularization and inflammation in diabetic retinopathies; current approved treatments successfully decrease VEGF levels in the eye.

APX3330 Reduces Pro-inflammatory Cytokines in Murine Cell Lines Involved in Macular Degeneration

- In vitro APX3330 suppresses pro-inflammatory cytokines in LPS stimulated murine macrophage cell lines known to be involved in macular degeneration:
 - TNF-α is a potent cytokine that enhances secretion of VEGF-A and VEGF-B by human choroidal fibroblast cells. [*J Cell Physiol, 2011*]
 - Genetic ablation of IL-6 led to significant suppression of AMD (murine CNV model). [*Am J Pathol, 2007*]
Preclinical Data: Oral APX3330 Blocks Neovascularization

Lesion Volume Decrease With Oral APX3330 In Murine Laser CNV Model Similar To EYLEA® Data

- Silva et al. Oral APX3330 treatment reduces L-CNV lesions in preclinical mouse model and confirms Phase 2 DR/DME clinical dose with sufficient distribution to human retina using PBPK modeling. Presented at the ARVO 2021 Annual Meeting
- Published data on EYLEA
Phase 1/2 Clinical Trials: PK Data Supporting The ZETA-1 Trial

Apexian preclinical data

Eisai preclinical data

Silva et al. Oral APX3330 treatment reduces L-CNV lesions in preclinical mouse model and confirms Phase 2 DR/DME clinical dose with sufficient distribution to human retina using PBPK modeling. Presented at the ARVO 2021 Annual Meeting

APX3330 Is Bioavailable And Reaches The Retina Via Oral Administration

Does oral administration of APX3330 reach the retina in sufficient concentration?

Mouse

- 25 mg/kg APX3330 oral gavage measured in mouse retina\(^1\)

Rat

- 10 mg/kg APX3330 oral gavage measured in rat eye\(^2\)

Human

- 300 mg BID (600 mg/day total)

 Established PBPK model predicts APX3330 reaches sufficient human retinal concentrations\(^3\)

Phase 1 PK Clinical Data

Human Drug Exposure Multiple Times Higher than Mouse Efficacious Levels

Human Pharmacokinetics of APX3330 at 120 mg/day

- **Human 120 mg/day**
 - 40 µg/ml
- **Mice 25 mg/kg**
 - 2 µg/ml

Source: Eisai/Apexian Human PK data

1. Apexian preclinical data
2. Eisai preclinical data
APX3330 Product Candidate Profile For Multiple Retinal Indications

First-In-Class Ref-1 Inhibitor With Favorable Human Safety Data

<table>
<thead>
<tr>
<th>Expected Efficacy Data</th>
<th>Favorable Safety Profile</th>
</tr>
</thead>
</table>
| **Improving Eye Health in Diabetics**
 ↓ Inflammation
 ↓ Abnormal Angiogenesis | **Few Systemic Adverse Effects**
 • < 5% Mild Gastrointestinal (diarrhea)
 • < 5% Mild Skin Rash (reversible)
 • Lack of Significant Acute Neurologic, Cardiovascular, Liver, or Pulmonary toxicity |
| **Enhance Compliance & Exposure**
 Oral pill may reduce the burden of frequent anti-VEGF injections | **No Ocular Effects**
 • No observed ocular AEs |

APX3330: Well-tolerated Oral Dose up to 600mg/day

Twice Daily Dosing

![Eye Icon](image)
DR/DME ZETA-1 Phase 2b Design

Ongoing, Randomized, Double-Masked, Placebo-Controlled 24-Week Trial (Similar To Eylea Pivotal DR P3)

ZETA-1

- 24 US sites
- ~100 participants with moderate-to-severe NPDR or mild PDR
- Noncentral DME is permitted

Eligibility Screening

Randomization

Endpoints

Primary: % of subjects with a ≥ 2 step improvement on the DRSS (Diabetic Retinopathy Severity Scale) score at week 24

Secondary:
- Central subfield thickness (CST)
- BCDVA (ETDRS)
- DRSS change at week 12
- Rescue subjects
- Safety and tolerability

Exploratory:
- Labs / PK

Phase 2b Start Initiated in April 2021

Top Line Expected in 2H22

NPDR = non-proliferative diabetic retinopathy (which includes non centrally involved diabetic macular edema)

PDR = proliferative diabetic retinopathy (which includes non centrally involved diabetic macular edema)
Innovative Approach For Retinal Diseases With APX Platform

APX3330 May Treat Patients Across The Spectrum Of Retinal Diseases

Potential Differentiated Solution

• **Potential First Oral Rx for Retina Diseases**
 - First-line earlier intervention for the diabetic eye
 - Add-on therapy to current anti-VEGF treatments

• **Proven Novel Mechanism**
 - May decrease both inflammation and angiogenesis

• **Convenient Daily Regimen**

• **Favorable Oral Safety Profile**
 - As seen in 11 completed Phase 1 and Phase 2 clinical trials

• **Improve Patient Compliance**
 - Potentially alleviate the frequent burden of injections
Team/Boards, Milestones, And Financial Data
Ocuphire Management Team

Decades Of Biotech And Drug Development Experience

Mina Sooch, MBA
President & CEO
and Founder

Drey Coleman
VP, Clinical
Operations

Barbara Withers, PhD
VP, Clinical and Regulatory Strategy

Charlie Hoffmann, MBA
VP Corporate Development and Operations

Amy Rabourn, CPA
VP, Finance

Mitch Brigell, PhD
Head, Clinical Development and Strategy

Ronil Patel, MS
Senior Director BD and Market Strategy

Daniela Oniciu, PhD
Global Head, R&D, Chemistry and Product Development

Chris Ernst
Global Head, QA and Manufacturing

Daniela Oniciu, PhD
Global Head, R&D, Chemistry and Product Development
Ocuphire's World-Class Medical Advisory Board
Fortunate For The Insights Of Leading KOLs & Drug Candidate Co-Founders

Jay Pepose, MD, PhD
UCLA

Marguerite McDonald, MD
Columbia University

Ed Holland, MD
Loyola University Chicago

Jack Holladay, MD
University of Texas

Thomas Samuelson, MD
University of Minnesota

Y. Ralph Chu, MD
Northwestern University

James Katz, MD
University of Illinois

Mark Kelley, PhD
Indiana University
Co-Founder Apexian/APX3330

David Lally, MD
Vanderbilt University

Mitch Jackson, MD
Chicago Medical School

David Lally, MD
Vanderbilt University

Ed Holland, MD
Loyola University Chicago

Marguerite McDonald, MD
Columbia University

Paul Karpecki, OD
Indiana University

Douglas Devries, OD
University of Nevada

Jack Holladay, MD
University of Texas

Paul Karpecki, OD
Indiana University

Eliot Lazar, MD
Georgetown University

Peter Kaiser, MD
Harvard Medical School

Thomas Samuelson, MD
University of Minnesota

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University

Eliot Lazar, MD
Georgetown University

Marguerite McDonald, MD
Columbia University
Ocuphire Board of Directors

Seasoned Directors With Decades Of Drug Development, M&A/Financings, And Ophthalmology

Cam Gallagher, MBA
Chair, Board Director

Mina Sooch, MBA
Vice-Chair, Board Director
President & CEO

James Manuso, PhD/MBA
Board Director

Talfinium Investments, Inc.

Sean Ainsworth, MBA
Lead Independent Director,
Board Director

Richard Rodgers, MBA
Board Director

Susan Benton, MBA
Board Director

Jay Pepose, MD, PhD
Board Director

Ocuphire

David Geffen
School of Medicine

UCLA

Washington University in St. Louis

Vellano Ventures

Apjohn Ventures

Gena Therapeutics

Gemphire Therapeutics

Anonza Therapeutics

Allergan

RetroSense Therapeutics

IMMUNOFOCUS

MOBILE

Pepose Vision

Wilmer Eye Institute

Washington University in St. Louis

Columbia Business School

astex
pharmaceuticals

Galenica

Tesarin

MCi

Abraxis Bioscience

University of Minnesota

Carlson School of Management

Théa

Bausch + Lomb

Shire

44
Ocuphire Cadence Of Milestones

Multiple Data Catalysts On Path To NDA(s)

2021

- Report Positive Phase 3 Data for RM (MIRA-2)
- Report Positive Phase 2 Data for Presbyopia (VEGA-1)
- New Patent Claims for Presbyopia
- ASCRS 2021 Presentation for MIRA-2 & VEGA-1
- Manufacture 3xRegistration Batches for Nyxol Blow-Fill-Seal (BFS) Eye Drops
- Initiate 2nd Phase 3 RM and Pediatric RM trial

2022

- Report 2nd Phase 3 Data for RM
- Report Pediatric Data in RM
- Report Phase 3 Data for NVD
- Submit Nyxol NDA for RM
- Report Phase 2 Data for DR/DME
- Initiate Two Phase 3 Presbyopia Trials
- Initiate Phase 3 Chronic Safety Trial

Ongoing Partnering Discussions with Leading Ophthalmic Companies (including European and Asian Players)
Ophthalmology – An Attractive Biotech Sector

Deal Activity And FDA Approvals In Ophthalmology In 2021

Deal Activity

<table>
<thead>
<tr>
<th>Date</th>
<th>Company</th>
<th>Transaction Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2021</td>
<td>Alcon</td>
<td>$355M</td>
</tr>
<tr>
<td>September 2021</td>
<td>Regenxbio</td>
<td>$1.75B</td>
</tr>
<tr>
<td>October 2021</td>
<td>Théa</td>
<td>~$2B</td>
</tr>
<tr>
<td>December 2021</td>
<td>Novartis</td>
<td>~$1.5B</td>
</tr>
<tr>
<td>December 2021</td>
<td>Lineage</td>
<td>$670M</td>
</tr>
</tbody>
</table>

New Product Approvals

7 of 60 Total FDA Drug Approvals in 2021 Were Ophthalmic Drugs

<table>
<thead>
<tr>
<th>Approval Date</th>
<th>Drug Name</th>
<th>Approval Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2021</td>
<td>Ranibizumab</td>
<td>sNDA</td>
<td>~$2B</td>
</tr>
<tr>
<td>September 2021</td>
<td>Ranibizumab</td>
<td>sNDA</td>
<td>~$1.5B</td>
</tr>
<tr>
<td>September 2021</td>
<td>Genentech Lineage</td>
<td>sNDA</td>
<td>$670M</td>
</tr>
</tbody>
</table>

Source: 1. Endpoint Dec 29, 2021- Hitting a new record on drug approvals, the FDA offers a thumbs-up to another atopic dermatitis contender; OIS Year in Review 2021; Company press releases

Aging Population

Active M&A

Lower Cost, Quick Enrolling, Short Duration Clinical Trials

Favorable Regulatory Environment

Lower Cost, Quick Enrolling, Short Duration Clinical Trials

Aging Population

Active M&A

Favorable Regulatory Environment

New Product Approvals

- **Ranibizumab biosimilar**
 - Genentech
 - Lineage
 - Novartis

Source: 1. Endpoint Dec 29, 2021- Hitting a new record on drug approvals, the FDA offers a thumbs-up to another atopic dermatitis contender; OIS Year in Review 2021; Company press releases
OCUP – Market Snapshot

Active Trading Volume And Sufficient Cash Runway Through 2Q 2023

<table>
<thead>
<tr>
<th>Ticker</th>
<th>OCUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>$3.73</td>
</tr>
<tr>
<td>Market Cap</td>
<td>$64.8 M</td>
</tr>
<tr>
<td>Shares Outstanding</td>
<td>18.8 M</td>
</tr>
<tr>
<td>Cash</td>
<td>$24.5 M</td>
</tr>
<tr>
<td>Cash Runway</td>
<td>Sufficient into 2Q 2023</td>
</tr>
<tr>
<td>Average Daily Volume</td>
<td>390 K</td>
</tr>
<tr>
<td>Short Interest</td>
<td>868 K; 5.1% of Float</td>
</tr>
</tbody>
</table>

As of 12-31-21

Shares Outstanding	18.8 M
Cash Runway	Sufficient into 2Q 2023
Average Daily Volume	390 K
Short Interest	868 K; 5.1% of Float

As of 12-31-21

Shares Outstanding	18.8 M
Cash Runway	Sufficient into 2Q 2023
Average Daily Volume	390 K
Short Interest	868 K; 5.1% of Float

As of 12-31-21 (unaudited)

Shares Outstanding	18.8 M
Cash Runway	Sufficient into 2Q 2023
Average Daily Volume	390 K
Short Interest	868 K; 5.1% of Float

As of 12-15-21

Research Analyst Coverage on OCUP

<table>
<thead>
<tr>
<th>Research Analyst Coverage on OCUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Newman</td>
</tr>
<tr>
<td>Canaccord Genuity</td>
</tr>
<tr>
<td>Kristen Kluska</td>
</tr>
<tr>
<td>Cantor Fitzgerald</td>
</tr>
<tr>
<td>James Molloy</td>
</tr>
<tr>
<td>Alliance Global Partners</td>
</tr>
<tr>
<td>Prakhar Agrawal</td>
</tr>
<tr>
<td>Jones Trading</td>
</tr>
<tr>
<td>Matthew Caufield</td>
</tr>
<tr>
<td>H. C. Wainwright</td>
</tr>
</tbody>
</table>
NVD Endpoint: 5% Low Contrast Visual Acuity (LCVA) Chart

FDA Accepted Endpoint For Contrast Sensitivity Assessment

Primary Endpoint of Nyxol LYNX-1 Trial

Percent of subjects with ≥ 3 lines of improvement in mesopic low contrast best-corrected distance visual acuity (7 days)

Inclusion Criteria includes subjects with baseline mesopic LCVA of 20/100 or worse
DR/DME Endpoint: Diabetic Retinopathy Severity Scale (DRSS)

FDA Accepted Endpoint For DR (EYLEA® in PANORAMA Pivotal Trial)

Primary Endpoint of APX3330 ZETA-1 Trial

Percent of patients with a ≥ 2 step improvement on the DRSS score at week 24

<table>
<thead>
<tr>
<th>DRSS Score</th>
<th>Description</th>
<th>Retinal Image</th>
<th>Patients included in the ZETA-1 Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (10)</td>
<td>DR Absent</td>
<td>Healthy blood vessels with no bulges</td>
<td>5, 6 (47, 53)</td>
</tr>
<tr>
<td>2 (20)</td>
<td>Microaneurysm only</td>
<td>Small bulges in blood vessel walls as well as other signs in the retina</td>
<td>7 – 13 (60, 61, 65, 71, 75, 85, 90)</td>
</tr>
<tr>
<td>3 (35)</td>
<td>Mild NPDR</td>
<td>More changes in the blood vessels in the retina and small spots of blood can become more visible</td>
<td>Moderately Severe NPDR</td>
</tr>
<tr>
<td>4 (43)</td>
<td>Moderate NPDR</td>
<td>More blood vessels in larger areas of the retina show changes</td>
<td>PDR – Mild, Moderate, and Severe</td>
</tr>
<tr>
<td>5, 6</td>
<td>Moderately Severe NPDR</td>
<td>Many of the blood vessels in the retina show visible changes</td>
<td></td>
</tr>
<tr>
<td>7 – 13</td>
<td>Increased growth of new, damaged blood vessels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A 13-point Scale Outlining the Various Stages of Diabetic Retinopathy