PXL770, a Novel Direct AMP-activated Protein Kinase Activator Produces Greater Efficacy when Combined with Other Key Therapeutic Mechanisms Targeting NASH Pierre-Axel Monternier¹, Pascale Gluais-Dagorn¹, Sébastien Bolze¹, Louise Thisted², Michael Feigh², David E. Moller¹, and Sophie Hallakou-Bozec¹, ¹Poxel, Lyon, France, ² Gubra, Hørsholm, Denmark

BACKGROUND and **OBJECTIVES**

Non-Alcoholic SteatoHepatitis (NASH) is a metabolic disease characterized by liver steatosis, inflammation and fibrosis. The complexity of the phenotype supports the need for a combination therapy strategy. Here, we assessed the potential to combine PXL770, a direct AMPK-activator that successfully completed a phase 2a clinical trial in NASH, with other agents in development: a glucagon-like peptide receptor (GLP-1R) agonist (Semaglutide/ SMG), a farsenoid x receptor (FXR) agonist (Obeticholic acid/ OCA) and a thyroid hormone receptor (THR-β agonist (Resmetirom/MGL) in a diet-induced obese and biopsy-confirmed mouse model of NASH. OBJECTIVES : evaluate PXL770 in NASH via combo-therapy strategy in a diet induced obesity biopsy proven-NASH mouse model

gubra

CONCLUSION

> Monotherapies improved NASH hallmarks

> Combinations of PXL770 with OCA, SMG and MGL improved selected NASH hallmarks to a greater extent than monotherapies

> These results highlight the potential benefit of combining PXL770 with FXR, GLP1-R and THRβ agonists

Vehicle n=13, PXL770 n=12,OCA n=13, PXL770 + OCA n=10, Semaglutide n=13, PXL770 + Semaglutide n=12, MGL3196 n=13, PXL770 + MGL3196 n=12 Model characterization: student t-test lean chow vs Vehicle with $p \le 0.05$, $p \le 0.01$, $p \le 0.001$, $p \le 0.001$, $p \le 0.0001$ Combination characterization: One Way ANOVA – Dunnett's multiple comparison test * p ≤ 0.05, ** p≤ 0.01, *** p≤0.001, **** p≤ 0.0001 *vs* DIO $\# p \le 0.05, \# \# p \le 0.01, \# \# \# p \le 0.001, \# \# \# \# p \le 0.0001 vs$ combination

In vivo study period		Assay/Histology
0	Week 8	Terminal Biochemistry:
ronic repeated dosing:		Liver Lipids/TG
hicle (PO, BID)		
(L770 (75 mg/kg PO, BID)		Liver biopsy histology:
caliva (OCA) (30 mg/kg PO, QD)		NAFLD Activity Score (HE) (pre-po
L770 & Ocaliva (OCA) (75 / 30 mg/kg PO, BID/QD)		🕂 Fibrosis Stage (PSR) (pre-post)
maglutide (15 mg/kg SC, QD)		Quantification:
L770 & Semaglutide (75 / 15 mg/kg PO/SC, BID/QD))	- Steatosis (HE) (post)
GL3196 (10 mg/kg PO, QD)		- Gal-3 (ICH) (post)

-PXL770 & MGL3196 (75 / 10 mg/kg PO, BID/QD)

α-SMA (ICH) (post)

PXL770 + MGL3196

PXL770 + MGL3196 improved liver steatosis, decreased the number of hepatocytes with lipid droplets and epididymal adipose tissue weight

