SY-1425, a Potent and Selective RARα Agonist, in Combination with Azacitidine Demonstrates a High Complete Response Rate and a Rapid Onset of Response in RARA-positive Newly Diagnosed Unfit Acute Myeloid Leukemia

Stephane de Botton<sup>1</sup>, Thomas Cluzeau<sup>2</sup>, Carlos E. Vigil<sup>3</sup>, Rachel J. Cook<sup>4</sup>, Philippe Rousselot<sup>5</sup>, David A. Rizzieri<sup>6</sup>, Jane L. Liesveld<sup>7</sup>, Pierre Fenaux<sup>8</sup>, Thorsten Braun<sup>9</sup>, Anne Banos<sup>10</sup>, Michael Savona<sup>11</sup>, Don Park<sup>12</sup>, Michael Kelly<sup>13</sup>, Angela Volkert<sup>13</sup>, Li Zhou<sup>13</sup>, Qing Kang-Fortner<sup>13</sup>, David A. Roth<sup>13</sup>, Eytan M. Stein<sup>14</sup>

<sup>1</sup>Institut Gustave Roussy, Paris, France; <sup>2</sup>Côte d'Azur University, CHU de Nice Hôpital, Nice, France; <sup>3</sup>University of Iowa, Iowa City, IA; <sup>4</sup>Oregon Health Science University, Portland, OR; <sup>5</sup>Centre Hospitalier de Versailles, Hôpital André Mignot, Le Chesnay, France; <sup>6</sup>Duke University Medical Center, Durham, NC; <sup>7</sup>University of Rochester Medical Center, Rochester, NY; <sup>8</sup>Hôpital Saint Louis, Paris, France; <sup>9</sup>Centre Hospitalier Universitiaire Hôpital Avicenne, Bobigny, France; <sup>10</sup>Centre Hospitalier de la Côte basque, Bayonne, France; <sup>11</sup>Vanderbilt University Medical Center, Nashville, TN; <sup>12</sup>Lehigh Valley Health Network Muhlenberg, Allentown, PA; <sup>13</sup>Syros Pharmaceuticals, Cambridge, MA; <sup>14</sup>Memorial Sloan Kettering Cancer Center, New York, NY

## RARA-positive AML is a Novel Patient Subset with an Actionable Target for Treatment with SY-1425, an Oral, Selective RARα Agonist

- Subset of non-APL AML patients characterized by overexpression of the RARA gene
  - Novel blood-based biomarker test identifies patients for treatment with SY-1425, with typical 2 to 3-day turnaround time<sup>1,2</sup>
  - Approximately 30% of AML patients are RARA-positive
- Preclinical synergy of SY-1425 with azacitidine (Aza) supported development of the combination in RARApositive myeloid malignancies<sup>3</sup>
- Early data of SY-1425/Aza demonstrated high CR rate and rapid onset of responses in RARA-positive newly diagnosed (ND) unfit AML<sup>4,5</sup>
- Unmet need for new well-tolerated therapies remains, for example, one-third of ND unfit AML patients do not respond to upfront treatment with venetoclax/Aza, and a majority of responders eventually relapse<sup>6</sup>



### Study SY-1425-201: A Phase 2, Multi-center, Open-label Trial

**Key Entry Criteria:** Treatment naïve non-APL AML unfit for intensive induction chemotherapy

Screen for RARA biomarker via peripheral blood-based test



51 total patients enrolled

RARA-positive N=22

RARA-negative N=29





**Regimen:** Azacitidine 75 mg/m2 IV or SC D1-7 followed by SY-1425 6 mg/m2/day PO D8-28 of a 28-day cycle

## **Primary Objective:** ORR per IWG **Other Analyses:**

- Composite CR rate
- · Time to response
- Duration of response
- Transfusion independence
- OS
- Safety and tolerability
- Exploration of molecular and cytogenetic characteristics associated with response

## **Baseline Demographics and Patient Characteristics**

| Characteristic                                                                                                                            | RARA-<br>positive<br>(N=22)          | RARA-<br>negative<br>(N=29)             |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|
| Median age, years (range)                                                                                                                 | 77 (60-91)                           | 76 (64-86)                              |
| Male, n (%)                                                                                                                               | 13 (59)                              | 19 (66)                                 |
| Diagnosis, n (%) De novo AML Secondary AML Evolved from antecedent hematologic malignancy Associated with treatment from prior malignancy | 16 (73)<br>6 (27)<br>6 (27)<br>0 (0) | 13 (45)<br>16 (55)<br>13 (45)<br>3 (10) |
| AML cytogenetic risk, n (%) Intermediate Poor Not done                                                                                    | 16 (73)<br>6 (27)<br>0 (0)           | 18 (62)<br>10 (34)<br>1 (3)             |
| Baseline bone marrow blasts, n (%) ≤ 30% >30%                                                                                             | 7 (32)<br>15 (68)                    | 11 (38)<br>18 (62)                      |

- Elderly patient population
- Large proportion with high blast counts and poor risk features

## **Patient Disposition**

| Characteristic                | Enrolled Population<br>N=51 |
|-------------------------------|-----------------------------|
| Discontinued treatment, n (%) | 46 (90)                     |
| AE <sup>a</sup>               | 16 (31)                     |
| PD                            | 14 (27)                     |
| Treatment failure             | 3 (6)                       |
| Withdrawal of consent         | 3 (6)                       |
| Lack of clinical benefit      | 1 (2)                       |
| Death                         | 1 (2)                       |
| Other                         | 8 (16)                      |

alncludes 2 patients who discontinued treatment prior to first dose of SY-1425. Of the 16 patients who discontinued due to AE, 2 were due to AEs assessed as related to study drug.

### **Safety Summary**

- Combination generally well tolerated with no increased toxicity relative to either single agent SY-1425 or Aza in AML
- Myelosuppression comparable to reports of single agent Aza in this population
- Majority of non-hematologic AEs are low grade and reversible
- SAEs were reported for 42 patients; the most frequent (occurring in ≥ 5 pts) included febrile neutropenia (14 pts), pyrexia (6 pts), pneumonia (6 pts) and sepsis (5 pts)



## RARA-positive Patients Have a High Complete Remission Rate with a Rapid Time to Response

| Best IWG Response <sup>1</sup> | RARA-positive<br>n (%) | RARA-negative<br>n (%) |  |  |  |  |  |
|--------------------------------|------------------------|------------------------|--|--|--|--|--|
| Response Evaluable, Na         | 18                     | 28                     |  |  |  |  |  |
| ORR                            | 12 (67)                | 12 (43)                |  |  |  |  |  |
| CR/CRi                         | 11 (61)                | 9 (32)                 |  |  |  |  |  |
| CR                             | 9 (50)                 | 7 (25)                 |  |  |  |  |  |
| CRm                            | 4 (22)                 | 3 (11)                 |  |  |  |  |  |
| CRc                            | 4 (22)                 | 3 (11)                 |  |  |  |  |  |
| CRi                            | 2 (11)                 | 2 (7)                  |  |  |  |  |  |
| MLFS                           | 1 (6)                  | 1 (4)                  |  |  |  |  |  |
| PR                             | 0 (0)                  | 2 (7)                  |  |  |  |  |  |

<sup>&</sup>lt;sup>a</sup> Only response evaluable patients are included, defined as all patients who completed one cycle of treatment with at least one post-baseline response evaluation or discontinued earlier due to disease progression, and who have not had any major protocol violations. There were 4 non-response evaluable RARA-positive patients (2 discontinued prior to first dose of SY-1425 and 2 discontinued prior to completion of cycle 1 due to AE not related to study drug) and 1 non-response evaluable RARA-negative patient (discontinued due to clinical progression without post-baseline response evaluation).

#### RARA-positive patients:

- High CR/CRi response rate
- Deep CR with 8/9 (89%) CRm or CRc
- Rapid time of onset of initial complete response<sup>b</sup> with median 1.2 months
- Median duration of complete response<sup>b</sup> 10.8 months (95% CI: 2.9, 15.2)

#### RARA-negative patients:

- Response rates comparable to historical response rates for single agent Aza<sup>2-4</sup>
- Median time to initial complete response<sup>b</sup> delayed relative to RARA-positive patients at 3.0 months
- Median duration of complete response<sup>b</sup> 10.3 months (95% CI: 3.1, NE)

<sup>&</sup>lt;sup>b</sup>Complete response includes CR, CRi, CRh

### **Responses Observed in RARA-positive Patients Irrespective of Mutation or Cytogenetic Risk**

|                  | Patients with<br>IWG Response |   |   |   |   |   |   |   |   |    | Patients without<br>IWG Response |    |    |    |    |    |    |    |
|------------------|-------------------------------|---|---|---|---|---|---|---|---|----|----------------------------------|----|----|----|----|----|----|----|
|                  | 1                             | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11                               | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| IWG response     |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| TP53             |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| ASXL1            |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| RUNX1            |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| NPM1             |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| FLT3             |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| CEBPA            |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| IDH1             |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| IDH2             |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| DNMT3A           |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| TET2             |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| BCORL1           |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| BCOR             |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| EZH2             |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| KRAS             |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| CBL              |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| PHF6             |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |
| Cytogenetic Risk |                               |   |   |   |   |   |   |   |   |    |                                  |    |    |    |    |    |    |    |

Achieved IWG response Presence of the indicated molecular mutation Cytogenetic Risk<sup>a</sup> Intermediate Poor

\*Data shown for the 18 response evaluable patients

<sup>&</sup>lt;sup>a</sup>Cytogenetic risk per NCCN AML guidelines 2018

### **Transfusion Independence**

#### Patients with ≥ 8 Weeks Transfusion-free Interval on Treatment



- High proportion of RARA-positive patients achieved or maintained transfusion independence:
  - 67% (12/18) of patients were free of both RBC and platelet transfusions for a ≥ 8-week interval on treatment
  - 86% (6/7) of patients dependent on transfusions at baseline converted to transfusion independence during treatment

## Overall Survival in RARA-positive Patients Stratified by Response Status



- RARA-positive patients with CR/CRi (N=11):
  - Median OS 18.0 months (95% CI: 5.7, NE)
- RARA-positive patients without CR/CRi (N=11)<sup>a</sup>
  - Median OS 5.6 months (95% CI: 0.4, 9.0)
- Total enrolled RARA-positive patients (N=22):
  - Median OS 8.4 months (95% CI: 5.2, 18.0)

<sup>&</sup>lt;sup>a</sup> RARA-positive patients without CR/CRi included 4 non-response evaluable patients (2 discontinued prior to first dose of SY-1425 and 2 discontinued prior to completion of cycle 1 due to AE not related to study drug).

# RARA-positive ND Unfit AML Patients Including Those with Response to SY-1425 Plus Aza are Enriched for Features Associated with Venetoclax Resistance

#### **Analyses of Patient Samples from Clinical Trial**



- Multiple recent studies report venetoclax resistance is associated with a monocytic phenotype<sup>1-3</sup>
- A monocytic expression signature was developed using 9 well-established monocytic and primitive gene expression markers<sup>4</sup>
- ~80% of RARA-positive ND unfit AML trial patients have monocytic phenotype associated with venetoclax resistance, which includes lower BCL2 and higher MCL1 expression<sup>4</sup>
- Majority of RARA-positive ND unfit AML patients who achieved CR/CRi with SY-1425/Aza have this monocytic phenotype<sup>4</sup>

Selection of RARA-positive Newly Diagnosed Unfit AML Patients with Elevated *RARA* Gene Expression Enriches for Features Associated with Primary Resistance to Venetoclax and Clinical Response to SY-1425, a Potent and Selective RARα Agonist, plus Azacitidine (abstract # 137323) to be presented in Session 616 AML: Novel Therapy, excluding Transplantation: Poster III on Mon, Dec 7

#### **Conclusions**

- SY-1425/Aza demonstrates high CR rates including the majority with molecular and cytogenetic CRs in RARA-positive AML, a novel subset of AML characterized by RARA overexpression
  - Rapid onset of response
  - Responses observed across cytogenetic risk groups and mutations
  - Majority achieved or maintained transfusion independence
  - Median OS for responders was 18.0 months, suggesting clinically meaningful benefit
- SY-1425/Aza was generally well-tolerated with no evidence of increased toxicity relative to either as a single agent
  - Rates of myelosuppression were comparable to single-agent Aza
- ~80% of RARA-positive ND unfit AML trial patients have monocytic phenotype associated with venetoclax resistance, which includes lower BCL2 and higher MCL1 expression<sup>1</sup>
  - Majority of RARA-positive ND unfit AML patients who achieved CR/CRi with SY-1425/Aza have this monocytic phenotype, suggesting the potential for combination treatment with SY-1425 to address significant unmet need in ND unfit AML, including in those who may be resistant to venetoclax<sup>1</sup>
- Further development is warranted in RARA-positive AML and other myeloid malignancies