Prospective identification of RB pathway alterations predict response to SY-1365, a selective CDK7 inhibitor, in a panel of high-grade ovarian cancer patient-derived xenograft models

Nan Ke, Liv Johannessen, Nisha Rajagopal, David Orlando, John Carulli, Graeme Hodgson Syros Pharmaceuticals, 620 Memorial Drive, Cambridge MA 02139

Background

- CDK7, a key regulator of transcription and cell cycle progression (Figure 1), has been implicated in the pathogenesis of high-grade ovarian cancer (HGOC)
- CDK7 regulates transcriptional initiation and elongation through phosphorylation of the CTD domain of RNA polymerase II (RNAPOL2) and phosphorylation of the transcriptional kinase CDK9 (Glover-Cutter et al., Mol Cell Biol 2009; Larochelle et al., Nat Struct Mol Biol 2012)
- CDK7 regulates cell cycle progression through T-loop phosphorylation of the cell cycle kinases (CDK-1, -2, -4, -6), which is required for interaction with and activation by their respective cyclins (Schachter & Fisher, Cell Cycle 2013)
- SY-1365, a potent and selective inhibitor of CDK7, has been shown to induce tumor growth inhibition (TGI), including complete regressions, in HGOC PDX models (AACR Annual Meeting, 2018); SY-1365 responses were associated with oncogenic alterations in the core RB pathway (Figure 2), the master regulator of cell cycle entry and commitment
- The aims of this study were to prospectively test whether RB pathway alterations, as defined by The Cancer Genome Atlas Research Network (TCGA, Nature 2011; Table 1), predict response to SY-1365 in an independent set of HGOC PDX models, and to identify potential biomarker strategies for patient selection in SY-1365 trials

Figure 1: CDK7 regulates multiple processes critical for orderly entry into and transition through the cell cycle. CDK7 activates cell cycle CDKs by promoting cyclin binding. CDK7 regulates transcription through RNAPOL2 & CDK9 phosphorylation. Cellular responses to cell cycle disruption before or after the restriction point are shown in blue text. Rb inhibition of E2F: Black dot, full inhibition; grey dot, partial inhibition

Methods

Figure 2: Core RB Pathway

Bolded genes: Recurrently altered in HGSOC (Table 1)

Table 1: Core RB pathway genes recurrently altered in 67% of HGSOC (TCGA, Nature 2011)

Gene	Protein	Type of alteration	Alteration Frequency
CDKN2A	P16	DR	30%
	PIO	D	2%
CCND1	Cyclin D1	AMP	4%
CCND2	Cyclin D2	UR	15%
CCNE1	Cyclin E1	AMP	20%
RB1	Rb	D	8%
		MUT	2%
MP: Amplification; D	R: Downregulatio	n; D: Deletion; MUT:	Mutation UR: Upregulation

- Molecular analysis of PDX tumors: DNA and RNA were extracted from formalin-fixed tumor tissue. Gene mutation and copy number (CN) were evaluated using the OncoCODE410 panel and NextCODE analysis pipeline (Wuxi). Genes were considered amplified or homozygously deleted if CN was ≥ 6 or ≤ 0.5, respectively. RNA expression was evaluated using the PanCancer panel (Nanostring). Genes were considered up- or down-regulated if expression was in the upper or lower 97th percentiles (Z-score ± 1.5) across all PDX models, respectively.
- SY-1365 in vivo response studies: Each of 25 independent HGOC PDX models (serous n=23, clear cell n=1, carcinosarcoma n=1) were randomized to 2 treatment groups: 1) SY-1365, 30-40 mg/kg twice weekly, i.v., 2) vehicle (Veh), twice weekly, i.v., with an average starting tumor volume (TV) of ~200mm³ in each group (n=3 per group). Percent tumor growth inhibition (%TGI) was calculated at end of treatment (EOT; the last day both groups were evaluable) by comparing tumor growth between SY-1365 and vehicle groups as follows:1- [(Mean TV SY-1365 @ EOT Mean TV SY-1365 @ Day 0)/(Mean TV Veh @ EOT Mean TV Veh @ Day 0)]. Models with %TGI >50% were considered responders to SY-1365 treatment. Analysis of TGI as a function of administered dose demonstrated consistency of results across the dosing range.

Molecular Evaluation of Core RB Pathway Alterations in HGOC PDX models

TGI Responses in PDX Models with Core RB Pathway Alterations

90% (9/10) of PDX models with core RB pathway alterations (RB-incompetent) responded to SY-1365 (true positives)
Similar responses observed in 40% (6/15) of models without alterations in the core RB pathway (false negatives)

Core RB Pathway Alterations Predict Response to SY-1365 in HGOC PDXs

PDX Model	Ovarian Subtype	CDKN2A	CCND1	CCND2	CCNE1	RB1 [#]	Core RB Status	Response Class	% TGI
ST3730	Clear Cell	HD	-	-	-	p.L335*	Incompetent	Responder	86
ST1269	Serous	HD	-	-	-	-	Incompetent	Responder	84
ST022	Serous	-	-	UR	-	-	Incompetent	Responder	81
ST2199	Serous	-	-	-	AMP	-	Incompetent	Responder	75
ST081	Serous	-	AMP	UR	-	-	Incompetent	Responder	74
ST450	Serous	-	-	-	AMP	-	Incompetent	Responder	74
ST206	Serous	-	-	-	AMP	-	Incompetent	Responder	62
ST511	Serous	DR	-	UR	-	-	Incompetent	Responder	55
ST419	Serous	-	-	UR	-	-	Incompetent	Responder	51
ST706B	Serous	DR	-	-	-	-	Incompetent	Non Responder	34
ST3210	Serous	-	-	-	-	-	Competent	Responder	87
ST024	Serous	-	-	-	-	-	Competent	Responder	78
ST2044	Serous	-	-	-	-	-	Competent	Responder	77
ST1301	Serous	-	-	-	-	-	Competent	Responder	68
ST2476	Serous	-	-	-	-	-	Competent	Responder	57
ST004	Serous	-	-	-	-	-	Competent	Responder	52
ST036	Serous	-	-	-	-	-	Competent	Non Responder	50
ST270	Serous	-	-	-	-	-	Competent	Non Responder	43
ST2418	Carcinosarcoma	-	-	-	-	-	Competent	Non Responder	37
ST2054	Serous	-	-	-	-	-	Competent	Non Responder	34
ST663	Serous	-	-	-	-	-	Competent	Non Responder	12
ST2072	Serous	-	-	-	-	-	Competent	Non Responder	11
ST103	Serous	-	-	-	-	-	Competent	Non Responder	-20
ST409	Serous	-	-	-	-	-	Competent	Non Responder	-37
ST1162	Serous	-		-	_		Competent	Non Responder	-52

AMP: Amplification; DR: Downregulation; HD: Homozygous deletion; UR: Upregulation; # RB1 mutation in ST3730 results in premature stop codon (99.7% allele frequency)

	Responder	Non Responder	Total		
Core RB Incompetent (Predicted Responder)	9	1	10	Positive Predictive Value 90% (9/10)	
Core RB Competent (Predicted Non-Responder)	6	9	15	Negative Predictive Value 60% (9/15)	
Total	15	10	25		
	Sensitivity 60% (9/15)	Specificity 90% (9/10)		Balanced Accuracy 75% (p<0.01)	

Conclusions

- In a prospectively defined study, core RB pathway alterations predict response to SY-1365 in HGOC PDX models with high positive predictive value (true positives: 90%, 9/10), providing a potential biomarker-driven patient enrichment strategy for clinical development of SY-1365
- SY-1365 responses observed in models without detectable core RB pathway alterations (false negatives: 40%, 6/15) suggest the presence of RB pathway alterations undetected in this analysis and/or alternate mechanisms driving SY-1365 activity including transcriptional regulation
- The results support the ongoing development of SY-1365 in patient populations enriched for RB pathway alterations and evaluation of core RB pathway alterations as biomarkers of SY-1365 clinical activity in patients with high grade ovarian cancer
- SY-1365 is being evaluated in the expansion phase of a phase 1 trial (NCT03134638), including in cohorts of patients with relapsed high grade serous ovarian cancer, clear cell ovarian cancer and CDK4/6 inhibitor resistant HR+ breast cancer with planned exploratory analyses of RB pathway alterations