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Abstract

Background: There is a critical unmet need for targeted therapies in ovarian cancer, especially high-grade 
serous ovarian cancer (HGSOC). We used enhancer mapping combined with transcriptomics and mutations to 
identify novel ovarian cancer subtypes and associated targets.
Material and methods: With ChIP-seq for H3K27Ac, we profiled the enhancer landscape of 101 primary tumor 
samples from 7 ovarian cancer subtypes with a focus on HGSOC, 29 cell line models, 3 PDXs, and 8 non-can-
cerous samples of ovarian and fallopian tube tissue. We also profiled many of these samples through RNA-seq 
and a focused NGS-based mutational panel. We used matrix factorization methods to reveal novel sub-groups 
of ovarian cancer patients and predicted their associated transcriptional circuitry.
Results: Through a computational deconvolution of enhancer maps, we identified novel enhancer defined pa-
tient subtypes of ovarian cancer. While some known subtypes, such as granulosa cell, associated uniquely with 
their own enhancer profile, the majority of the primary tumor samples fell into 4 clusters that did not correlate 
with histological subtype or with known high-frequency ovarian cancer mutations. Each cluster was associated 
with its own unique super-enhancer (SE) signature, implying that each is driven by a unique transcriptional cir-
cuitry. There was a striking cluster-specific patterning of many known ovarian cancer related genes such as 
FOXM1, CD47, and MYC, and genes linked to pathways known to be dysregulated in ovarian cancer, including 
an SE linked to the RB pathway gene Cyclin E1. Furthermore, many additional cluster-specific SEs were dis-
covered representing novel potential therapeutic targets. Interestingly, while we could assign ovarian cancer cell 
line models to these novel subtypes, many cell lines’ enhancer landscapes appeared to be distinct from those of 
primary tumor cells.
Conclusions: Together, our results comprise the largest ovarian cancer enhancer mapping effort to date, and 
demonstrate how an integrated analysis of enhancers, transcriptomes, and genotypes together can yield tran-
scriptional circuitry that reinforces the role of known pathways associated with ovarian cancer progression and 
treatment, can be used to select cell models that best recapitulate the enhancer landscape of primary tumors, 
and can be mined to identify novel targets and biomarkers. Cluster-specific SEs at MYC and CCNE1 suggest 
that some tumors have increased transcriptional dependency on these loci as well as the components of the 
corresponding transcriptional machinery. The role of one such component, CDK7, is currently being evaluated in 
ovarian cancer patients with SY-1365, a first-in-class selective CDK7 inhibitor in Phase 1 clinical development 
(NCT 03134638).
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Map Enhancer Regions Identify Coordinated Patterns 
of Enhancer Activity

Using Non-Negative Matrix Factoriza-
tion (NNMF, Brunet’s algorithm), de-
compose transformed SE score matrix 
into 6 factors. The granulosa cell and 
yolk sack subtypes were shown to rep-
resent their own subgroups of sam-
ples, and so were held out along with 
the normals for de novo clustering.
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NNMF is well suited to the task since 
any enhancer activity in the cell popu-
lation can only add to enhancer signal. 
The choice to use 6 factors was driven 
by a shoulder in the variance ex-
plained by the factors in genome-wide 
SEs, as well as being a reasonable 
number of factors given the number of 
samples. 

Find samples with
similar 

enhancer-pattern
utilization

K-medoids clustering of the 
column scaled NNMF coeffi-
cient matrix (H) with euclide-
an distance and k=4 reveals 
clear clusters of enhancer 
pattern utilization. 

Using Pearson correlation, 
we link SEs to genes by 
searching in cis around SEs 
for gene expression that cor-
relates with SE strength 
across samples. P-values 
must pass genome-wide mul-
tiple hypothesis testing cor-
rection.
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H3K27Ac ChIP-seq 
reveals a small 
number of “super-en-
hancer” regions con-
taining orders of 
magnitude higher 
binding occupancy 
and spanning DNA 
domains

Across 109 primary OvCa 
samples, select the 300 SEs 
with the highest across-sample 
variability

Enhancers ranked by 
H3K27Ac signal

We profiled 146 SE maps across a range of sample types:
• Primary:
 • High-grade serous (HGS): 40
 • Low-grade serious (LGS): 16
 • Unknown serous (SUn): 13
 • Mucinous (Mu): 8
 • Endometrioid (En): 7
 • Yolk Sac (YS): 6
 • Granulosa cell (GC): 4
 • Unknown (Un): 4
 • Clear cell (CC): 3
• Cell lines: 29
• PDX: 3
• Normal (FT/Ov): 8
• Normal-like cell lines: 5
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Enhancers ranked by H3K27Ac Signal

Examples of SE-Proximal Genes

SEs from one of the HSOC tumors

Mapping H3K27Ac in primary ovarian cancer and normal tissue reveals 
tumor-specific Super-Enhancers (SEs)
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Novel ovarian cancer patient subgroup identification through NNMF
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Differential enhancer activity between tumor and normal

Differential super-enhancer landscapes across samples identifies 
normal- and tumor-specific transcriptional circuitry

Normal (mean transformed ChIP-seq signal)
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Top tumor GO categories:
• Chromatin organization
• Chromatin modifying en-
zymes

Top normal GO categories:
• Cell junction
• Focal adhesion

Cluster 1 Cluster 2 Cluster 3 Cluster 4 GC YS Norm

101 Primary Tumor SamplesNormal

Primary tumor samples are characterized by SE gain and loss compared to normal tissue.

Gained SE

Unchanged

Lost SE

%
 E

nh
an

ce
rs

0

20

40

60

80

100

• Average gained 
SEs compared to 
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Comparing tumor vs normal with a generalized linear model, we find 348 regions of gained SE activity, and 211 with 
diminished SE activity. These SEs are linked to genes that are enriched for particular pathways, the gained SEs tend 
to be linked to genes enriched for the GO:BP categories chromatin organization and chromatin modifying enzymes. 
The diminished SEs tend to be linked to genes enriched for cell junction and focal adhesion categories. 

Significant SE-SE mutual information

Clustering patient SE maps by NNMF consensus 
clustering reveals 4 patient subgroups

Holding out the GC and YS subtypes, we clustered the 
primary samples into 4 subgroups (left, top). We chose 
4 as it yielded the desired complexity while maximizing 
the cophenetic correlation of the resulting clusters 
(right). These epigenome-defined subgroups did not 
segregate by histological subtype.
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Clustering leads to subgroup-specific SE-tagged genes.
The clustered samples can be queried to identify SEs that 
distinguish subsets of samples. The SEs (rows) are shown 
above, ordered by patient subgroup (columns). SEs are 
clustered by coordinated activity across patients (hierarchical 
tree, left). Three example subgroup-specific loci are shown: 
the HOXB locus (top), the HOXD locus (middle), and GATA4 
(bottom), with lines indicating their position in the heatmap 
above. 
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MSIGDB Hallmark Pathways upregulated in each subgroup 
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Each patient subgroup exhibits its own 
representative biology. 

Each cluster of primary tumor samples is upregulated 
for unique pathways, as shown by finding GSEA 
enrichments for the MSIGDB Hallmark set of 
meta-pathways (heatmap on right, where each column 
shows the enrichment of the given patient cluster for a 
hallmark gene set). Cluster 1 exhibits higher 
expression of immune pathways. As an example, it 
has the highest expression of and largest 
super-enhancer linked to the CD47 transcript (bottom 
right), involved in immune evasion. Cluster 2 has the 
strongest SE at the HOXB locus, while having the 
weakest at HOXD, implying a distinct developmental 
state. Cluster 3 shows upregulated pathways involved 
in MTOR signaling, MYC targets, and glycolysis. 
Cluster 4 is characterized by increased expression in 
inflammatory and cytokine response pathways, but is 
the most “normal-like” of the clusters, with the highest 
SE map correlation with normal samples, as well as 
lower expression of FOXM1, and pre-RC components 
such as ORC6 (right). Interestingly, cluster 
membership did not correlate with known ovarian 
somatic mutations, implying that epigenomic subtype 
is independent of mutational burden. C
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A mutual information network of subgroup- and normal-specific SEs was constructed to demonstrate the complex 
circuitry underlying ovarian cancer. Rectangles represent SEs linked to TF transcripts. Circles represent SEs linked to 
non-TF transcripts. Edges represent mutual information relationships stronger than a stringent cutoff based on a 
shuffled empirical background. All SEs depicted here were identified as specific to either a patient subgroup or normal 
tissue. The SEs present in both patient tumor subgroups and normal are depicted in gray, while those SEs present only 
in tumor samples are shown in red.

Conclusions
We have assembled the largest H3K27Ac ChIP-seq database in ovarian cancer and related normal tissue to date, with 
the express purpose of profiling active enhancer activity. We complemented our ChIP-seq data with RNA-seq and 
mutational profiling. We were able to show large differences between the enhancer landscapes of tumor and normal in 
ovarian cancer. We were also able to identify 6 total patient subgroups, comprising granulosa cell, yolk sac, and 4 
novel subgroups with samples from clear cell, high grade serous, low grade serous, mucinous, and endometrioid 
ovarian cancer. Each of these subgroups is driven by its own unique transcriptional circuitry, with associated 
transcription factors and potential druggable targets. Interestingly, while we can predict subgroup membership for cell 
lines, we find that many cell lines have a transcriptional signature distinct from patients (volcano plot below, showing 
thousands of genes significantly differentially expressed in cell lines). Many genes involved in ovarian cancer etiology 
are linked to cluster-specific SEs, such as CCNE1, MYC, and CD47 (above and left). Many other potential targets are 
revealed by our analysis. 
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Interestingly, we find that ovarian cell lines as a group are transcriptionally di-
vergent from patients. As an example, we show an enhancer volcano plot on 
the left of patients vs. cell lines, revealing 1792 potential SE loci that diverge 
from patients with an FDR of at least 0.01 (~48% of loci). 

Within the group of cell lines, we find that some cell lines are more represen-
tative than others of the general patient enhancer landscape. Importantly, we 
can predict a subgroup (see next panel) for each cell line. 

Some cluster-specific SEs suggest increased tumor dependency on 
transcriptional machinery

Cluster-specific SEs imply that the tumors 
falling into those clusters have an 
increased transcriptional dependency on 
active transcription initiation at these loci, 
as well as the components of the 
corresponding transcriptional machinery. 
Three examples shown here (right) 
demonstrate cluster-specific SEs at 
CCNE1, and two cluster-specific SEs at 
MYC. 


