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Differential super-enhancer landscapes across samples identifies

Abstract

Background: There is a critical unmet need for targeted therapies in ovarian cancer, especially high-grade
serous ovarian cancer (HGSOC). We used enhancer mapping combined with transcriptomics and mutations to
identify novel ovarian cancer subtypes and associated targets.

Material and methods: With ChlP-seq for H3K27Ac, we profiled the enhancer landscape of 101 primary tumor
samples from 7 ovarian cancer subtypes with a focus on HGSOC, 29 cell line models, 3 PDXs, and 8 non-can-

cerous samples of ovarian and fallopian tube tissue. We also profiled many of these samples through RNA-seq
and a focused NGS-based mutational panel. We used matrix factorization methods to reveal novel sub-groups

of ovarian cancer patients and predicted their associated transcriptional circuitry.

Results: Through a computational deconvolution of enhancer maps, we identified novel enhancer defined pa-
tient subtypes of ovarian cancer. While some known subtypes, such as granulosa cell, associated uniquely with
their own enhancer profile, the majority of the primary tumor samples fell into 4 clusters that did not correlate
with histological subtype or with known high-frequency ovarian cancer mutations. Each cluster was associated
with its own unique super-enhancer (SE) signature, implying that each is driven by a unique transcriptional cir-
cuitry. There was a striking cluster-specific patterning of many known ovarian cancer related genes such as
FOXM1, CD47, and MYC, and genes linked to pathways known to be dysregulated in ovarian cancer, including
an SE linked to the RB pathway gene Cyclin E1. Furthermore, many additional cluster-specific SEs were dis-
covered representing novel potential therapeutic targets. Interestingly, while we could assign ovarian cancer cell
line models to these novel subtypes, many cell lines’ enhancer landscapes appeared to be distinct from those of
primary tumor cells.

Conclusions: Together, our results comprise the largest ovarian cancer enhancer mapping effort to date, and
demonstrate how an integrated analysis of enhancers, transcriptomes, and genotypes together can yield tran-
scriptional circuitry that reinforces the role of known pathways associated with ovarian cancer progression and
treatment, can be used to select cell models that best recapitulate the enhancer landscape of primary tumors,
and can be mined to identify novel targets and biomarkers. Cluster-specific SEs at MYC and CCNE1 suggest
that some tumors have increased transcriptional dependency on these loci as well as the components of the
corresponding transcriptional machinery. The role of one such component, CDK7, is currently being evaluated in
ovarian cancer patients with SY-1365, a first-in-class selective CDKY inhibitor in Phase 1 clinical development
(NCT 03134638).
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A mutual information network of subgroup- and normal-specific SEs was constructed to demonstrate the complex
circuitry underlying ovarian cancer. Rectangles represent SEs linked to TF transcripts. Circles represent SEs linked to
non-TF transcripts. Edges represent mutual information relationships stronger than a stringent cutoff based on a
shuffled empirical background. All SEs depicted here were identified as specific to either a patient subgroup or normal
tissue. The SEs present in both patient tumor subgroups and normal are depicted in gray, while those SEs present only
In tumor samples are shown in red.
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Conclusions

We have assembled the largest H3K27Ac ChlP-seq database in ovarian cancer and related normal tissue to date, with
the express purpose of profiling active enhancer activity. We complemented our ChlP-seq data with RNA-seq and
mutational profiling. We were able to show large differences between the enhancer landscapes of tumor and normal in
ovarian cancer. We were also able to identify 6 total patient subgroups, comprising granulosa cell, yolk sac, and 4
novel subgroups with samples from clear cell, high grade serous, low grade serous, mucinous, and endometrioid
ovarian cancer. Each of these subgroups is driven by its own unique transcriptional circuitry, with associated
transcription factors and potential druggable targets. Interestingly, while we can predict subgroup membership for cell
lines, we find that many cell lines have a transcriptional signature distinct from patients (volcano plot below, showing
thousands of genes significantly differentially expressed in cell lines). Many genes involved in ovarian cancer etiology
are linked to cluster-specific SEs, such as CCNE1, MYC, and CD47 (above and left). Many other potential targets are
revealed by our analysis.
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