

SYR

The epigenetic landscape of T cell subsets in SLE identifies known and potential novel drivers of the autoimmune response

Jozsef Karman, Brian Johnston, Sofija Miljovska, David Orlando, Eric Olson and Tracey Lodie

Syros Pharmaceuticals, Cambridge, MA

FOCIS Annual Meeting, June 16th, 2017

Epigenetic changes are key determinants of immune activation

- Epigenetic changes are a key driver of many immune processes (e.g. naïve to memory transition in T and B cells)
- Helper T cells in SLE display profound changes in DNA methylation; however, epigenetic changes beyond methylation have not been characterized in T cells in SLE in detail
- Naïve B cells in SLE display significant changes in open chromatin (see below; Scharer et al. Sci Reports 6:27030.)
- Changes in enhancer biology in T cells in SLE have not been addressed
- Super-enhancers (SEs) in T cells may provide important insight into disease pathogenesis

Super-enhancers regulate transcription of key genes that determine cell fate and function

- Super-enhancers (SEs) are regions of the mammalian genome comprising multiple enhancers collectively bound by an array of transcription factor proteins
- SEs are enriched in SNPs associated with autoimmune disease susceptibility
- Genes most likely driven by each SE are linked to SEs based on proximity

 We have been using chromatin immunoprecipitation-next generation sequencing (ChIP-Seq) for H3K27Ac marks to identify SEs (example of BHLHE40 locus in naïve vs. memory T cells above)

Comparative SE analysis on T cell populations from SLE vs. healthy donors

- Naïve (CD45RA⁺), memory (CD45RO⁺) and regulatory (CD25⁺IL7R⁻)
 CD4⁺ T cells purified from SLE patients and healthy donors
- Study goals:
 - Establish whether SEs are relevant features to identify T cell subtype biology
 - Analyze SE biology in SLE in each T cell subtype
- Comparison of SE regions using Recomb scores:
 - Generate genome-wide SE maps in T cell populations
 - Calculate total reads over SE regions
 - Calculate SE signal fold change and p value for differentials
 - Further analyze differential SEs using pathway analysis methods

T cells from **healthy donors** display highly distinct SE profiles depending on cell state

- Samples were clustered based on SE similarity. Bar indicates cell type
- Naïve, antigen-inexperienced T cells show a high degree of similarity
- T cell populations with previous antigen exposure show greater heterogeneity (memory T cells)
- GSEA analysis of cell type-specific SEs indicates enrichment of cell type-specific genes

SEs identify biologically relevant genes in **naïve T cells** from healthy donors

Superenhancers

- SEs identify genes within pathways specific to naïve T cells
- Similar results were obtained in memory and regulatory T cells

Top 5 enriched GSEA signatures in SEs upregulated in naïve T cells from healthy donors	Significant? (FWER<0.05)
NAIVE_VS_CENT_MEMORY_CD4_TCELL_UP	Y
RESTING_VS_BYSTANDER_ACTIVATED_CD4_TCELL_UP	Y
NAIVE_VS_EFF_MEMORY_CD4_TCELL_UP	Y
NAIVE_VS_CENT_MEMORY_CD4_TCELL_UP	Υ
EFF_MEM_VS_CENT_MEM_CD4_TCELL_UP	Y

All three T cell subpopulations show different epigenetic profiles between SLE and healthy

- Samples were clustered based on SE similarity. Bars indicate cell type (upper bar) or phenotype (lower bar)
- Samples from SLE and healthy donors generally cluster together regardless of T cell subpopulation
- Within either SLE or healthy, clustering on SE profiles generally groups T cells by subtype
- SLE memory T cells are highly heterogeneous

Differential SE-linked genes point to key changes in **naïve T cell** biology in SLE

- H3K27Ac tracks from highlighted example genes are shown below
- Naïve T cells show significant changes in SE biology between SLE and healthy
- Results analyzed through Ingenuity Pathway Analysis (IPA) upstream regulator analysis

Many canonical T cell activation pathways are strongly downregulated in SLE

 IPA generates hypotheses on up- and down-regulated gene expression networks and their potential regulators

Gene networks differentially regulated in naïve T cells between SLE and healthy

Upstream Regulator	Predicted Activation State	Activation z-score	p-value of overlap
T cell receptor	Inhibited	-2.401	4.86E-15
IL2	Inhibited	-2.475	1.03E-12
IL15	Inhibited	-2.149	3.44E-07
CD40LG	Inhibited	-3.765	1.35E-05
PI3K (family)	Inhibited	-2.468	2.97E-05
EP300	Inhibited	-2.100	3.31E-05
IL7	Inhibited	-3.625	4.81E-05

- This overall inhibition of T cell activation is probably mostly due to SOC taken by these patients that have strong effects on lymphocyte activation
- The obvious questions are: what maintains the activated state of T cells in SLE?
 What are the pathways missed by the SOC?

SYK and IRF4 were identified as drivers of the SE landscape in SLE T cells

Gene networks differentially regulated in naïve T cells between SLE and healthy

Upstream Regulator	Predicted Activation State	Activation z- score	p-value of overlap
SYK	Activated	2.236	4.67E-04
MNT	Activated	2.000	1.76E-02
IRF4	Activated	2.332	2.70E-02
CBL	Activated	2.159	3.11E-02
TAL1	Activated	2.334	4.98E-02

Scharer et al. Sci Reports 6:27030.

Gene networks differentially regulated in memory T cells between SLE and healthy

Upstream Regulator	Predicted Activation State	Activation z- score	p-value of overlap
RBM5	Activated	2.598	6.81E-05
PRKAA1	Activated	2.563	6.97E-03
PRKAA2	Activated	2.449	3.96E-02
GFI1	Activated	2.353	3.34E-04
IRF4	Activated	2.213	3.05E-05
Alpha catenin	Activated	2.121	6.16E-03

- SYK is a key driver of T cell activation in SLE
- IRF4 is a critical driver of both T and B cell activation in SLE
- Naïve T cells (with no previous antigen exposure) already display profound changes in epigenetic landscape

Summary and conclusions

- SE changes between SLE and healthy point to major changes in T cell biology in all subsets of T cells (e.g. IL7R)
- Naïve T cells (without prior antigen exposure) already display profound changes in epigenetic landscape and point to critical transcription factor networks driving disease
- SE analysis in memory T cell population in SLE may provide insight into disease heterogeneity, a major hurdle in SLE drug development
- SE analysis uncovered critical pathways driving disease pathogenesis in SLE that may be unaffected by SOC treatment
- SE analysis may point to key dependencies in cell types driving SLE that can lead to development of novel, more specific therapies in selected subsets of patients with SLE

Acknowledgements

Syros Pharmaceuticals:

Tracey Lodie
Eric Olson
Nancy Simonian
David Roth
Brian Johnston
Sofija Miljovska
David Orlando

