EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:

29.04.2020 Bulletin 2020/18

Application number: 16188203.0

Date of filing: 03.06.2011

Int Cl.:

- A61K 35/74 *(2015.01)*
- C12N 1/00 *(2006.01)*
- C12Q 1/02 *(2006.01)*
- G01N 33/56 *(2006.01)*

Designated Contracting States:

- AL
- AT
- BE
- BG
- CH
- CY
- CZ
- DE
- DK
- EE
- ES
- FI
- FR
- GB
- GR
- HR
- HU
- IE
- IT
- LT
- LU
- LV
- MC
- MK
- MT
- NL
- NO
- PL
- PT
- RO
- RS
- SE
- SI
- SK
- SM
- TR

Priority:

- 04.06.2010 JP 2010129134
- 03.12.2010 PCT/JP2010/071746

Divisional application:

- 19168383.8 / 3 539 548
- 19174499.4 / 3 552 613

Representative: Hoffmann Eitle Patent- und Rechtsanwälte PartmbB
Arabellastraße 30
81925 München (DE)

Proprietor: The University of Tokyo
Bunkyo-ku,
Tokyo 113-8654 (JP)

Inventors:

- HONDA, Kenya
 Yokohama 230-0045 (JP)
- ATARASHI, Koji
 Yokohama 230-0045 (JP)
- ITOH, Kikuji
 Bunkyo-ku
 Tokyo 113-8654 (JP)
- TANOUE, Takeshi
 Yokohama 230-0045 (JP)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
• TANOU ET AL.: "Immune responses to gut microbiota-commensals and pathogens", GUT MICROBES, vol. 1, no. 4, 1 July 2010 (2010-07-01), pages 224-233, XP02657283,
• ORIANA ROSSI ET AL: "Faecalibacterium prausnitzi A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses", SCIENTIFIC REPORTS, vol. 6, 4 January 2016 (2016-01-04), page 18507, XP055351788, DOI: 10.1038/srep18507
Description

[Technical Field]

[0001] Described herein is a composition which has an effect of inducing proliferation or accumulation of regulatory T cells, and which comprises, as an active ingredient, bacteria belonging to the genus Clostridium, a physiologically active substance derived from the bacteria, bacterial spores, or the like.

[0002] Also described is a method for inducing proliferation or accumulation of regulatory T cells, as well as a method for inhibiting such proliferation or accumulation. Also described is a vaccine composition containing at least one strain of bacteria belonging to the genus Clostridium or a spore of bacteria, as well as a method for treating or preventing at least one disease or condition selected from infectious diseases and autoimmune diseases by administering the vaccine composition to an individual in need thereof.

[0003] Also described is a method for screening for a compound that promotes proliferation or accumulation of regulatory T cells, as well as a non-human mammal which is used in this method, and in which a reporter gene is expressed under control of IL-10 gene expression.

[Background Art]

[0004] Hundreds of species of commensal microorganisms are harbored in gastrointestinal tracts of mammals, and intimately interact with the host immune systems. Results of researches using germ-free (GF) animals have shown that the commensal microorganisms exert great influences on the development of mucosal immune systems such as histogenesis of Peyer's patches (PPs) and isolated lymphoid follicles (ILFs), secretion of antimicrobial peptides from epithelium, and accumulation of unique lymphocytes in mucosal tissues, the unique lymphocytes including immunoglobulin A-producing plasma cells, intraepithelial lymphocytes, IL-17-producing CD4-positive T cells (Th 17), and IL-22-producing NK-like cells (Non-Patent Documents 1 to 7). Consequently, the presence of intestinal bacteria enhances protective functions of the mucous membranes, providing the hosts with robust immune responses against pathogenic microbes invading the bodies. On the other hand, the mucosal immune systems maintain unresponsiveness to dietary antigens and harmless microbes (Non-Patent Document 3). For this reason, abnormality in the regulation of cross-talk between commensal bacteria and an immune system (intestinal dysbiosis) may lead to overly robust immune response to environmental antigens, so that inflammatory bowel disease (IBD) is caused (Non-Patent Documents 8 to 10).

[0005] Results of Recent studies have shown that individual commensal bacteria control differentiation of their specific immune cells in the mucosal immune system. For example, Bacteroides fragilis, which is a commensal bacterium in humans, specifically induces a systemic Th1 cell response and a mucosal IL-10-producing T cell response in mice, and plays a role in protecting the host from colitis, which would otherwise be caused by a pathogen (Non-Patent Document 3). Segmented filamentous bacteria, which are intestinal commensal bacteria in mice, are shown to induce mucosal Th17 cell response and thereby to enhance resistance against infection of gastrointestinal tracts of the host with a pathogen (Non-Patent Documents 11 to 13). In addition, short-chain fatty acids derived from several commensal bacteria are known to suppress intestinal inflammation (Non-Patent Document 14). Moreover, it is presumed that the presence of some species of intestinal microbiota exerts a great influence on the differentiation of regulatory T cells (hereafter referred to as "Treg cells") which maintain homeostasis of the immune system.

[0006] Meanwhile, regulatory T cells which have been identified as a subset suppressing immunity are CD4+ T cells in which a transcription factor Foxp3 is expressed, and are known to play an important role in maintaining immunological homeostasis (Non-Patent Documents 8, 9, 15, and 16). Moreover, it has been known that the Foxp3-expressing cells are present in a large number especially in the colon, and only Treg cells present locally in the colon constantly expresses IL-10, which is an immunosuppressive cytokine, at a high level (Non-Patent Document 17). It is also known that animals having CD4+ Foxp3+ cells from which IL-10 is specifically removed develop inflammatory bowel disease (Non-Patent Document 18).

[0007] Accordingly, if the mechanism of the induction of Treg cells which produce IL-10 in the colon at a high level is elucidated, immunosuppression can be enhanced, which in turn can be applied to treatment of autoimmune diseases such as inflammatory bowel disease, as well as to organ transplantation.

[0008] However, mechanisms of how a large number of Treg cells come to be present in the colon and how the Treg cells produce IL-10 in the colon at a high level are still unclear. Moreover, it is also still unclear what species of bacteria constituting the intestinal commensal bacterial flora exerts the influence on the induction of regulatory T cells.
[Citation List]

[Non Patent Literature]

[0009]

[0010] GABORIAU-ROUTHIAU et al., "Immunity", October 16, 2009, 31, 677 describes Segmented-Filamentous Bacteria (SFBs) which do not belong to the genus Clostridium, and indeed are phylogenetically remote therefrom.

[0012] DE 10 2006 062250 A1 (SAUR-BROSCH ROLAND [DE]) discloses the use of a composition comprising minerals and/or vitamins and optionally acetogenic and/or butyrogenic bacteria for oral or rectal administration for the treatment or prevention of abdominal discomfort which are accompanied by a reduced reductively acetogenic metabolic activity.

[0013] ITOH K et al. "Characterization of clostridia isolated from faeces of limited flora mice and their effect on caecal size when associated with germ-free mice." LABORATORY ANIMALS APR 1985 vol. 19, no. 2, April 1985 (1985-04), pages 111-118 discloses the characterization of 115 strains of clostridia accumulated from 3 separate isolations from the faeces of 1 limited flora (LF) mouse produced by inoculation of germ-free mice with chloroform-treated faeces of conventional mice, and the effect on caecal size when associated with germ-free mice was studied.

[Summary of Invention]

The invention is defined in the claims, and provides a composition for use in a method of treating or preventing an infectious disease by inducing proliferation or accumulation of transcription factor Foxp3-positive regulatory T cells, the composition comprising, as an active ingredient, bacteria belonging to the genus Clostridium of clusters XIVa and/or IV, wherein the bacteria induce said proliferation or accumulation of transcription factor Foxp3-positive regulatory T cells. Other aspects of the invention are also defined in the claims.

The present inventors have found that a chloroform-treated fraction and a spore-forming fraction of a fecal sample obtained from a mammal induces accumulation of regulatory T cells (Treg cells) in the colon. Moreover, the present inventors have found that bacteria belonging to the genus Clostridium induce proliferation or accumulation of regulatory T cells in the colon. The present inventors have also found that the regulatory T cells induced by these bacteria suppress proliferation of effector T cells. Furthermore, the present inventors have also found that colonization of bacteria belonging to the genus Clostridium and resultant proliferation or accumulation of Treg cells regulate local and systemic immune responses.

From these findings, the present inventors have found that the use of bacteria belonging to the genus Clostridium, spores thereof, or a physiologically active substance derived therefrom makes it possible to induce the proliferation or
accumulation of regulatory T cells (Treg cells), and further to suppress immune functions.

[Advantageous Effects]

The compositions described herein containing as an active ingredient bacteria belonging to the genus Clostridium or a physiologically active substance derived from the bacteria serve as an excellent composition for inducing the proliferation or accumulation of regulatory T cells (Treg cells). Immunity in a living organism can be suppressed in accordance with the claims through administration of the composition of the present invention as defined in the claims as a pharmaceutical product or ingestion of the composition as a food or beverage.

In addition, if a food or beverage such as a health food comprises the composition of the present invention, healthy individuals can ingest the composition easily and routinely. As a result, it is possible to induce the proliferation or accumulation of regulatory T cells and thereby to improve immune functions, as defined in the claims.

[Brief Description of Drawings]

[0020]

[Fig. 1] Fig. 1 is a schematic diagram showing a method of producing Il10venus mouse.

[Fig. 2] Fig. 2 is a diagram showing results of Southern blotting performed for analysis as to whether or not the Il10venus mice have an Il10venus allele.

[Fig. 3] Fig. 3 is a FACS dot-plot diagram showing results obtained when Venus-positive cells and Venus-negative cells from the Il10venus mice were sorted.

[Fig. 4] Fig. 4 is a graph showing the results obtained when the amounts of IL-10 mRNA expressed in Venus-positive cells and Venus-negative cells of the Il10venus mice were analyzed by real-time RT-PCR.

[Fig. 5] Fig. 5 is a graph showing change in the ratio of Foxp3+ cells in CD4+ lymphocytes of SPF mice.

[Fig. 6] Fig. 6 shows FACS dot-plot diagrams showing analysis results of the ratios of Foxp3+ cells in CD4+ lymphocytes isolated from the small intestine, the colon, and the peripheral lymph nodes of GF mice and SPF mice.

[Fig. 7] Fig. 7 is a graph showing analysis results of the ratios of Foxp3+ cells in CD4+ lymphocytes isolated from the small intestine, the colon, and the peripheral lymph nodes of GF mice and SPF mice.

[Fig. 8] Fig. 8 shows graphs showing analysis results of the numbers of CD4+ Foxp3+ cells isolated from the small intestine, the colon, and the peripheral lymph nodes of GF mice and SPF mice.

[Fig. 9] Fig. 9 is a plot diagram showing analysis results of the ratios of Venus+ cells in CD4+ cells in various tissues of SPF mice treated with antibiotics.

[Fig. 10] Fig. 10 shows FACS dot-plot diagrams showing analysis results of the ratio of Foxp3+ cell in CD4+ lymphocytes isolated from the colonic lamina propria of GF mice to which a fecal suspension of SPF mice was administered.

[Fig. 11] Fig. 11 is a graph showing analysis results of the ratios of Foxp3+ cells in CD4+ lymphocytes isolated from the lamina propria of the colon and the lamina propria of the small intestine of GF mice to which a fecal suspension of SPF mice was administered.

[Fig. 12] Fig. 12 is a graph showing analysis results of the ratio of Foxp3+ cells in CD4+ lymphocytes isolated from the lamina propria of mice deficient in ILFs, PPs, and colonic-patches.

[Fig. 13] Fig. 13 shows FACS dot-plot diagrams showing analysis results of the ratios of Foxp3+ cells in CD4+ lymphocytes isolated from the colonic lamina propria of mice to which specific commensal bacteria were administered.

[Fig. 14] Fig. 14 shows graphs showing analysis results of the ratios of Foxp3+ cells in CD4+ lymphocytes isolated from the colonic lamina propria of GF mice to which specific commensal bacteria were administered.

[Fig. 15] Fig. 15 is a graph showing analysis results of the ratios of IFN-\textgamma+ cells in CD4+ lymphocytes isolated from the colonic lamina propria of mice in which specific commensal bacteria were colonized.

[Fig. 16] Fig. 16 is a graph showing analysis results of the ratios of IL-17+ cells in CD4+ lymphocytes isolated from the colonic lamina propria of mice in which specific commensal bacteria were colonized.

[Fig. 17] Fig. 17 is a graph showing analysis results of the ratios of Foxp3+ cells in CD4+ lymphocytes isolated from the colon of kinds of SPF mice each being deficient in a pathogen-associated molecular pattern recognition receptor-associated factor.

[Fig. 18] Fig. 18 is a graph showing analysis results of the ratios of Foxp3+ cells in CD4+ lymphocytes isolated from the colonic lamina propria of Myd88-/- mice in which the Clostridium was colonized.

[Fig. 19] Fig. 19 shows FACS dot-plot diagrams showing analysis results of the ratios of Venus+ cells in lymphocytes isolated from various tissues of Il10venus mice.

[Fig. 20] Fig. 20 is a FACS dot-plot diagram showing analysis results of the expression of a T cell receptor \(\beta \) chain.
on cell surfaces of lymphocytes isolated from the colonic lamina propria of Il10venus mice.

[Fig. 21] Fig. 21 shows FACS dot-plot diagrams showing analysis results of the expression of IL-17, IL-4, and IFN-γ in lymphocytes isolated from the colonic lamina propria of Il10venus mice.

[Fig. 22] Fig. 22 shows graphs showing analysis results of the amounts of mRNAs of IL-10, CTLA4, Foxp3, and GITR expressed in spleen Foxp3-CD4+ cells, spleen Foxp3+ CD4+ cells, colonic lamina propria Venus+ cells, and small intestinal lamina propria Venus+ cells.

[Fig. 23] Fig. 23 shows FACS dot-plot diagrams showing analysis results of the expression of CD4, Foxp3, and Venus in the lamina propria of the small intestine and the lamina propria of the colon of GF Il10venus mice and SPF Il10venus mice.

[Fig. 24] Fig. 24 shows FACS dot-plot diagrams showing analysis results of the expression of Venus and Foxp3 of CD4 cells in various tissues of SPF Il10venus mice.

[Fig. 25] Fig. 25 shows FACS dot-plot diagrams showing analysis results of the expression of Foxp3 and Venus in the colonic lamina propria of GF Il10venus mice in which specific commensal bacteria were colonized.

[Fig. 26] Fig. 26 is a graph showing analysis results of the expression of Foxp3 and/or Venus of CD4+ cells in the small intestine of Il10venus mice in which specific commensal bacteria were colonized.

[Fig. 27] Fig. 27 is a graph showing analysis results of the ratios of Venus+ cells in CD4+ cells isolated from various tissues of Il10venus mice treated with antibiotics.

[Fig. 28] Fig. 28 is a plot diagram showing analysis results of the expression of Foxp3 and/or Venus of CD4+ cells in the colonic lamina propria of GF Il10venus mice in which the genus Clostridium was colonized, CD4+ Venus+ cells from the colonic lamina propria of SPF Il10venus mice, and CD4+ GFP+ cells from the spleen of Foxp3GFP reporter mice.

[Fig. 30] Fig. 30 is a graph showing the results obtained when SPF B6 mice were treated with polymyxin B or vancomycin for 4 weeks, and then analyzed for the ratio of Foxp3+ cells in the CD4+ cell group.

[Fig. 31] Fig. 31 is a graph showing the results obtained when SPF mice-derived chloroform-treated feces were orally administered to GF mice, and then the ratio of Foxp3+ cells in the CD4+ cell group was analyzed.

[Fig. 32] Fig. 32 is a graph showing the general results of flow cytometry analysis on Helios expression in LP lymphocytes in the thymuses or the colons of SPF mice, GF mice, Lactobacillus-colonized mice, or Clostridium-colonized mice.

[Fig. 33] Fig. 33 shows plot diagrams showing representative results of flow cytometry analysis on CD4 expression, Foxp3 expression, and Helios expression in the LP lymphocytes in the thymuses or the colons of the SPF mice, the GF mice, the Lactobacillus-colonized mice, or the Clostridium-colonized mice.

[Fig. 34] Fig. 34 is a graph showing the results obtained when the colons derived from GF mice, Lactobacillus-colonized mice, or Clostridium-colonized mice were cultured, and the culture supernatants thereof were analyzed for the TGF-β1 concentration by ELISA.

[Fig. 35] Fig. 35 is a graph showing the results obtained when intestinal epithelial cells (IECs) derived from GF mice or Clostridium-colonized mice were cultured, and the culture supernatants thereof were analyzed for the TGF-β1 concentration by ELISA.

[Fig. 36] Fig. 36 is a graph showing the results obtained when splenic CD4+ T cells were cultured together with an anti-CD3 antibody and with a culture supernatant of IECs isolated from GF mice or mice colonized with 46 bacterial strains of the genus Clostridium (Clost.) in the presence or absence of an anti-TGF-β antibody, and the T cells were collected on day 5 of the culture and analyzed for Foxp3 expression by real-time RT-PCR.

[Fig. 37] Fig. 37 is a graph showing the results obtained when C57BL/6 GF mice were orally inoculated with 46 bacterial strains of the genus Clostridium (Clost.) or three bacterial strains of the genus Lactobacillus (Lacto.), and IECs were collected three weeks after the inoculation and analyzed for the relative mRNA expression level of the MMP2 gene by real-time RT-PCR.

[Fig. 38] Fig. 38 is a graph showing the results obtained when C57BL/6 GF mice were orally inoculated with 46 bacterial strains of the genus Clostridium (Clost.) or three bacterial strains of the genus Lactobacillus (Lacto.), and IECs were collected three weeks after the inoculation and analyzed for the relative mRNA expression level of the MMP9 gene by real-time RT-PCR.

[Fig. 39] Fig. 39 is a graph showing the results obtained when C57BL/6 GF mice were orally inoculated with 46 bacterial strains of the genus Clostridium (Clost.) or three bacterial strains of the genus Lactobacillus (Lacto.), and IECs were collected three weeks after the inoculation and analyzed for the relative mRNA expression level of the MMP13 gene by real-time RT-PCR.

[Fig. 40] Fig. 40 is a graph showing the results obtained when C57BL/6 GF mice were orally inoculated with 46 bacterial strains of the genus Clostridium (Clost.) or three bacterial strains of the genus Lactobacillus (Lacto.), and IECs were collected three weeks after the inoculation and analyzed for the relative mRNA expression level of the IDO gene by real-time RT-PCR.
Described herein is a composition that induces proliferation or accumulation of regulatory T cells, the composition comprising, as an active ingredient, at least one substance selected from the group consisting of the following (a) to (c):

(a) bacteria belonging to the genus Clostridium or a physiologically active substance derived from the bacteria;
(b) a spore-forming fraction of a fecal sample obtained from a mammal or a culture supernatant of the fraction; and
(c) a chloroform-treated fraction of a fecal sample obtained from a mammal or a culture supernatant of the fraction.

Herein, "regulatory T cells" mean T cells which have a function of suppressing an abnormal or excessive immune response, and which play a role in immune tolerance. The regulatory T cells of the invention are transcription factor Foxp3-positive CD4-positive T cells. However, other regulatory T cells also include transcription factor Foxp3-negative regulatory T cells that are IL-10-producing CD4-positive T cells.

The meaning of the "induces proliferation or accumulation of regulatory T cells" in the present invention includes an effect of inducing the differentiation of immature T cells into regulatory T cells, which differentiation leads to the proliferation or the accumulation of regulatory T cells. In addition, the meaning of the "induces proliferation or accumulation of regulatory T cells" in the present invention includes in-vivo effects, in vitro effects, and ex vivo effects. Accordingly, all of the following effects are included: an effect of inducing in vivo proliferation or accumulation of regulatory T cells by causing the bacteria belonging to the genus Clostridium or the physiologically active substance or the like to induce the bacteria; an effect of inducing proliferation or accumulation of cultured regulatory T cells by causing the bacteria belonging to the genus Clostridium or the physiologically active substance or the like to cause the bacteria; and an effect of inducing proliferation or accumulation of cultured regulatory T cells by causing the bacteria belonging to the genus Clostridium or the physiologically active substance or the like to cause the bacteria.
derived from the bacteria to act on the cultured regulatory T cells; and an effect of inducing proliferation or accumulation of regulatory T cells which are collected from a living organism and which are intended to be subsequently introduced into a living organism, such as the organism from which they were obtained or another organism, by causing the bacteria belonging to the genus Clostridium or the physiologically active substance or the like derived from the bacteria to act on the regulatory T cells. The effect of inducing proliferation or accumulation of regulatory T cells can be evaluated, for example, as follows. Specifically, the bacteria belonging to the genus Clostridium or the physiologically active substance or the like derived from the bacteria is orally administered to an experimental animal such as a germ-free mouse, then CD4-positive cells in the colon are isolated, and the ratio of regulatory T cells contained in the CD4-positive cells is measured by flow cytometry (refer to Example 7).

[0024] The regulatory T cells of which proliferation or accumulation is induced by the composition of the present invention are transcription factor Foxp3-positive regulatory T cells.

[0025] The "bacteria belonging to the genus Clostridium," which are the active ingredient in the composition of the present invention, are defined in the claims, and have the effect of inducing proliferation or accumulation of regulatory T cells.

[0026] One strain of the bacteria alone can be used for the composition of the present invention, but two or more strains of the bacteria can be used together for the composition of the present invention. The use of multiple strains of bacteria belonging to the cluster XIVa or the cluster IV in combination can bring about an excellent effect on regulatory T cells. In addition to the bacteria belonging to these clusters, bacteria belonging to other clusters (for example, bacteria belonging to the cluster III) can also be used in combination. If more than one strain of bacteria is used (e.g., one or more strain belonging to cluster XIVa, one or more strain belonging to cluster IV, one or more strain belonging to a cluster other than cluster XIVa or cluster IV, such as one or more strain belonging to cluster III), the type and number of strains used can vary widely. The type and number to be used can be determined based on a variety of factors (e.g., the desired effect, such as induction or inhibition of proliferation or accumulation of regulatory T cells; the disease or condition to be treated, prevented or reduced in severity; the age or gender of the recipient) The strains can be present in a single composition, in which case they will be consumed or ingested together, or can be present in more than one composition (e.g., each can be in a separate composition), in which case they can be consumed individually or the compositions can be combined and the resulting combination (combined compositions) consumed or ingested. Any number or combination of strains that proves effective (e.g., any number from one to 100, 1 to 50, 1 to 40, 1 to 30, 1 to 20, 1 to 10, 1 to 5 and any number therebetween) can be administered. In certain embodiments of the present invention, a combination of some or all of the 46 strains described in Document (Itoh, K., and Mitsuoka, T. Characterization of clostridia isolated from faeces of limited flora mice and their effect on caecal size when associated with germ-free mice. Lab. Animals 19: 111-118 (1985)) is used. For example, at least one, two or more, three, three or more, four, four or more, five, five or more, six, six or more or any other number of the 46 described strains, including 46 strains, can be used. They can be used in combination with one another and in combination with strains not described in the cited reference (e.g., in combination with one or more strains belonging to cluster III). Note that, the cluster of "bacteria belonging to the genus Clostridium" can be identified, for example, as follows. Specifically, the bacteria belonging to the genus Clostridium are classified by PCR using a primer set consisting of SEQ ID NOs 64 and 65 (for Clostridium spp. belonging to the cluster XIVa) or a primer set consisting of SEQ ID NOs 66 and 67 (for Clostridium spp. belonging to the cluster IV) (refer to Example 18). In addition, the bacteria belonging to the genus Clostridium are classified by sequencing of 16S rRNA gene amplified using a primer set consisting of SEQ ID NOs 19 and 20 (refer to Example 7).

[0027] Viable cells of the bacteria belonging to the genus Clostridium can be used for the composition of the present invention, and killed cells thereof may also be used for the composition. In addition, from the viewpoint of stability to heat, resistance to antibiotics and the like, and long storage period, the bacteria belonging to the genus Clostridium are preferably in the form of spore.

[0028] The meaning of the "physiologically active substance derived from bacteria belonging to the genus Clostridium" of the present invention includes substances contained in the bacteria, secretion products of the bacteria, and metabolites of the bacteria. Such a physiologically active substance can be identified by purifying an active component from the bacteria, a culture supernatant thereof, or intestinal tract contents in the intestinal tract of a mouse in which only bacteria belonging to the genus Clostridium are colonized by an already known purification method.

[0029] The active ingredient "spore-forming fraction of a fecal sample obtained from a mammal" in the composition as described herein includes spore-forming bacteria present in feces of a mammal, and has the effect of inducing proliferation or accumulation of regulatory T cells.

[0030] The active ingredient "chloroform-treated fraction of a fecal sample obtained from a mammal" in the composition as described herein is obtained by treating feces of a mammal with chloroform (for example, 3% chloroform), and has the effect of inducing proliferation or accumulation of regulatory T cells.

[0031] Note that the "mammal" herein includes humans, mice, rats, cattle, horses, pigs, sheep, monkeys, dogs, and cats.
Meanwhile, when the "spore-forming fraction of a fecal sample obtained from a mammal" or the "chloroform-treated fraction of a fecal sample obtained from a mammal" is cultured in a medium, substances contained in the bacteria, secretion products of the bacteria, metabolites of the bacteria are released from the bacteria and the like contained in the fraction. The meaning of the active ingredient "culture supernatant of the fraction" in the composition described herein includes such substances, secretion products, and metabolites. The culture supernatant is not particularly limited, as long as the culture supernatant has the effect of inducing proliferation or accumulation of regulatory T cells. Examples of the culture supernatant include a protein fraction of the culture supernatant, a polysaccharide fraction of the culture supernatant, a lipid fraction of the culture supernatant, and a low-molecular weight metabolite fraction of the culture supernatant.

The composition of the present invention may be in the form of a pharmaceutical composition, a food or beverage (which may also be an animal feed), or a reagent used for an animal model experiment, the pharmaceutical composition, the food or beverage, and the reagent having the effect of inducing proliferation or accumulation of regulatory T cells. An example herein revealed that regulatory T cells (Treg cells) induced by bacteria or the like belonging to the genus Clostridium suppressed the proliferation of effector T-cells. Accordingly, the composition of the present invention can be used suitably as defined in the claims as a composition having an immunosuppressive effect. The immunosuppressive effect can be evaluated, for example, as follows. Specifically, regulatory T cells isolated from an experimental animal, such as a mouse, to which the composition of the present invention is orally administered are caused to act on effector T-cells (CD4⁺ CD25⁺ cells) isolated from the spleen, and then proliferation ability thereof is measured by using the intake amount of [³H]-thymidine as an index (refer to Example 14).

The composition of the present invention can be used, for example, as claimed, as a pharmaceutical composition; a food or beverage for improving immune functions; or a reagent for suppressing the proliferation or function of effector T-cells.

Autoimmune diseases, allergic diseases, and rejection in organ transplantations and the like include inflammatory bowel disease (IBD), ulcerative colitis, Crohn's disease, sprue, autoimmune arthritis, rheumatoid arthritis, Type I diabetes, multiple sclerosis, graft vs. host disease following bone marrow transplantation, osteoarthritis, juvenile chronic arthritis, Lyme arthritis, psoriatic arthritis, reactive arthritis, spondylarthropy, systemic lupus erythematous, insulin dependent diabetes mellitus, thyroiditis, asthma, psoriasis, dermatitis scroederma, atopic dermatitis, graft versus host disease, acute or chronic immune disease associated with organ transplantation, sarcoidosis, atherosclerosis, disseminated intravascular coagulation, Kawasaki's disease, Grave's disease, nephrotic syndrome, chronic fatigue syndrome, Wegener's granulomatosis, Henchoch-Schoenlej n purpura, microscopic vasculitis of the kidneys, chronic active hepatitis, uveitis, septic shock, toxic shock syndrome, sepsis syndrome, cachexia, acquired immunodeficiency syndrome, acute transverse myelitis, Huntington's chorea, Parkinson's disease, Alzheimer's disease, stroke, primary biliary cirrhosis, hemolytic anemia, polyglandular deficiency type I syndrome and polyglandular deficiency type II syndrome, Schmidt's syndrome, adult (acute) respiratory distress syndrome, alopecia, alopecia areata, seronegative arhpathy, arthropathy, Reiter's disease, psoriatic arthropathy, chlamydia, yersinia and salmonella associated arthropathy spondyloarhpathy, atheromatous disease/arteriosclerosis, atopic allergy, food allergies, autoimmune bullous disease, pemphigus vulgaris, pemphigus foliaceus, pemphigoid, linear IgA disease, autoimmune haemolytic anaemia, Coombs positive haemolytic anaemia, acquired pernicious anaemia, juvenile pernicious anaemia, myalgic encephalitis/Royal Free Disease, chronic mucocutaneous candidiasis, giant cell arteritis, primary scroerising hepatitis, crytopgenic autoimmune hepatitis, Acquired ImmunoDeficiency Disease Syndrome, Acquired ImmunoDeficiency Related Diseases, Hepatitis C, common varied immunodeficiency (common variable hypogammaglobulinaemia), dilated cardiomyopathy, fibrotic lung disease, crytopgenic fibrosing alveolitis, postinflammatory interstitial lung disease, interstitial pneumonitis, connective tissue disease associated interstitial lung disease, mixed connective tissue disease associated lung disease, systemic sclerosis associated interstitial lung disease, rheumatoid arthritis associated interstitial lung disease, systemic lupus erythematous associated lung disease, dermatomyositis/polymyositis associated lung disease, Sjogren's disease associated lung disease, ankylosing spondylitis associated lung disease, vasculitic diffuse lung disease, haemysclerosis associated lung disease, drug-induced interstitial lung disease, radiation fibrosis, bronchiolitis obliterans, chronic eosinophilic pneumonia, lymphocytic infiltrative lung disease, postinfecstious interstitial lung disease, gouty arthritis, autoimmune hepatitis, type-I autoimmune hepatitis (classical autoimmune or lupoid hepatitis), type-2 autoimmune hepatitis (anti-LKM antibody hepatitis), autoimmune mediated hypoglycaemia, type B insulin resistance with acanthosis nigricans, hypoparathyroidism, acute immune disease associated with organ transplantation, chronic immune disease associated with organ transplantation, osteoarthritis, primary scroerising cholangitis, idiopathic leucopenia, autoimmune neutropenia, renal disease NOS, glomerulonephritides, microscopic vasulitis of the kidneys, discoid lupus, erythematous, male infertility idiopathic or NOS, sperm autoimmunity, multiple sclerosis (all subtypes), insulindependent diabetes mellitus, sympathetic ophthalmia, pulmonary hypertension secondary to connective tissue disease, Goodpasture's syndrome, pulmonary manifestation of polyarteritis nodosa, acute rheumato fever, rheumatoid spondylitis, Still's disease, systemic sclerosis, Takayasu's disease/arteritis, autoimmune thrombocytopenia, idiopathic thrombocytopenia, autoimmune thyroid disease,
hyperthyroidism, goitrous autoimmune hypothyroidism (Hashimoto’s disease), atrophic autoimmune hypothyroidism, primary myxoedema, phacogenic uveitis, primary vasculitis, vitiligo, allergic rhinitis (pollen allergies), anaphylaxis, pet allergies, latex allergies, drug allergies, allergic rhinoconjunctivitis, eosinophilic esophagitis, hypereosinophilic syndrome, eosinophilic gastroenteritis cutaneous lupus erythematosus, eosinophilic esophagitis, hypereosinophilic syndrome, and eosinophilic gastroenteritis.

[0036] The composition of the present invention can also be used according to the claims as a pharmaceutical composition for preventing or treating infectious diseases in an individual whose resistance to the infectious diseases is impaired because of damage due to excessive inflammation caused by the immunity.

[0037] Example of infectious pathogens which impair maintenance or recovery of homeostasis of a host, and which eventually bring about such immunopathological tissue damage include Salmonella, Shigella, Clostridium difficile, Mycobacterium (which cause the disease tuberculosis), protozoa (which cause the disease malaria), filarial nematodes (which cause the disease filariasis), Schistosoma (which cause the disease schistosomiasis), Toxoplasma (which cause the disease toxoplasmosis), Leishmania (which cause the disease leishmaniasis), HCV and HBV (which cause the disease hepatitis C and hepatitis B), and herpes simplex viruses (which cause the disease herpes).

[0038] Pharmaceutical preparations can be formulated from the composition of the present invention by already known drug formulation methods. For example, the composition of the present invention can be used orally or parenterally in the forms of capsules, tablets, pills, liquids, powders, granules, fine granules, film-coated preparations, pellets, troches, sublingual preparations, chewables, buccal preparations, pastes, syrups, suspensions, elixirs, emulsions, liniments, ointments, plasters, cataplasms, transdermal absorption systems, lotions, inhalations, aerosols, injections, suppositories, and the like.

[0039] For formulating these preparations, the composition of the present invention can be used in appropriate combination with carriers acceptable pharmacologically or acceptable for a food or beverage, specifically, with sterile water, physiological saline, vegetable oil, solvent, a base material, an emulsifier, a suspending agent, a surfactant, a stabilizer, a flavoring agent, an aromatic, an excipient, a vehicle, a preservative, a binder, a diluent, a toxicity adjusting agent, a soothing agent, a bulking agent, a disintegrating agent, a buffer agent, a coating agent, a lubricant, a colorant, a sweetener, a thickening agent, a flavor corrigent, a solubilizer, other additives, or the like.

[0040] Meanwhile, for formulating a pharmaceutical preparation thereof, and particularly for formulating a pharmaceutical preparation for oral administration, it is preferable to use in combination a composition which enables an efficient delivery of the composition of the present invention to the colon, from the viewpoint of more efficiently inducing the proliferation or accumulation of regulatory T cells in the colon.

[0041] Such a composition or method which enables the delivery to the colon is not particularly limited, and known compositions or methods can be employed as appropriate. Examples thereof include pH sensitive compositions, more specifically, enteric polymers which release their contents when the pH becomes alkaline after the enteric polymers pass through the stomach. When a pH sensitive composition is used for formulating the pharmaceutical preparation, the pH sensitive composition is preferably a polymer whose pH threshold of the decomposition of the composition is 6.8 to 7.5. Such a numeric value range is a range where the pH shifts toward the alkaline side at a distal portion of the stomach, and hence is a suitable range for use in the delivery to the colon.

[0042] Moreover, another example of the composition enabling the delivery to the colon is a composition which ensures the delivery to the colon by delaying the release of the contents by approximately 3 to 5 hours, which corresponds to the small intestinal transit time. In an example of formulating a pharmaceutical preparation using the composition for delaying the release, a hydrogel is used as a shell. The hydrogel is hydrated and swells upon contact with gastrointestinal fluid, so that the contents are effectively released. Furthermore the delayed release dosage units include drug-containing compositions having a material which coats or selectively coats a drug. Examples of such a selective coating material include in vivo degradable polymers, gradually hydrolyzable polymers, gradually water-soluble polymers, and/or enzyme degradable polymers. A preferred coating material for efficiently delaying the release is not particularly limited, and examples thereof include cellulose-based polymers such as hydroxypropyl cellulose, acrylic acid polymers and copolymers such as methacrylic acid polymers and copolymers, and vinyl polymers and copolymers such as polyvinylpyrrolidone.

[0043] Examples of the composition enabling the delivery to the colon further include bioadhesive compositions which specifically adhere to the colonic mucosal membrane (for example, a polymer described in the specification of US Patent No. 6,368,586), and compositions into which a protease inhibitor is incorporated for protecting particularly a biopharmaceutical preparation in the gastrointestinal tracts from decomposition due to an activity of a protease.

[0044] An example of a system enabling the delivery to the colon is a system of delivering a composition to the colon by pressure change in such a way that the contents are released by utilizing pressure change caused by generation of gas in bacterial fermentation at a distal portion of the stomach. Such a system is not particularly limited, and a more specific example thereof is a capsule which has contents dispersed in a suppository base and which is coated with a hydrophobic polymer (for example, ethyl cellulose).

[0045] Another example of the system enabling the delivery to the colon is a system of delivering a composition to the
colon, the system being specifically decomposed by an enzyme (for example, a carbohydrate hydrolase or a carbohydrate reductase) present in the colon. Such a system is not particularly limited, and more specific examples thereof include systems which use food components such as non-starch polysaccharides, amylose, xanthan gum, and azopolymers.

0046 When used as a pharmaceutical composition, the composition of the present invention may be used in combination with an already known pharmaceutical composition for use in immunosuppression. Such a known pharmaceutical composition is not particularly limited, and may be at least one therapeutic composition selected from the group consisting of corticosteroids, mesalazine, mesalamine, sulfasalazine, sulfasalazine derivatives, immunosuppressive drugs, cyclosporin A, mercaptopurine, azathiopurine, prednisone, methotrexate, antihistamines, glucocorticoids, epinephrine, theophylline, cromolyn sodium, anti-leukotrienes, anti-cholinergic drugs for rhinitis, anti-cholinergic decongestants, mast-cell stabilizers, monoclonal anti-IgE antibodies, vaccines (preferably vaccines used for vaccination where the amount of an allergen is gradually increased), and combinations thereof. It is preferable to use these therapeutic compositions in combination with the composition of the present invention.

0047 When the composition of the present invention is used as a food or beverage, the food or beverage can be, for example, a health food, a functional food, a food for specified health use, a dietary supplement, a food for patients, or an animal feed. The food or beverage of the present invention can be ingested in the forms of the compositions as described above, and also can be ingested in the forms of various foods and beverages. Specific examples of the foods and beverages include various beverages such as juices, refreshing beverages, tea beverages, drink preparations, jelly beverages, and functional beverages; alcoholic beverages such as beers; carbohydrate-containing foods such as rice food products, noodles, breads, and pastas; paste products such as fish hams, sausages, paste products of seafood; retort pouch products such as curries, food dressed with a thick starchy sauces, and Chinese soups; soups; dairy products such as milk, dairy beverages, ice creams, cheeses, and yogurts; fermented products such as fermented soybean pastes, yogurts, fermented beverages, and pickles; bean products; various confectionery products such as Western confectionery products including biscuits, cookies, and the like, Japanese confectionery products including steamed bean-jam buns, soft adzuki-bean jellies, and the like, candies, chewing gums, gummies, cold desserts including jellies, creme caramels, and frozen desserts; instant foods such as instant soups and instant soy-bean soups; microwavable foods; and the like. Further, the examples also include health foods and beverages prepared in the forms of powders, granules, tablets, capsules, liquids, pastes, and jellies. The composition of the present invention can be used for animals including humans. The animals, other than humans, are not particularly limited, and the composition can be used for various livestock, poultry, pets, experimental animals, and the like. Specific examples of the animals include pigs, cattle, horses, sheep, goats, chickens, wild ducks, ostriches, domestic ducks, dogs, cats, rabbits, hamsters, mice, rats, monkeys, and the like, but the animals are not limited thereto.

0048 Without wishing to be bound by theory, individuals in which the relative abundance of bacteria belonging to the group Firmicutes (the group to which the Clostridium clusters IV and XIVa belong) is large gain more body weight than individuals in which the relative abundance of bacteria belonging to the group Bacteroidetes is large. Accordingly, the composition of the present disclosure is capable of conditioning absorption of nutrients and improving feed efficiency. From such a viewpoint, the composition of the present disclosure can be used for promoting body weight gain, or for an animal feed good in feed efficiency.

0049 Moreover, the addition of the composition of the present disclosure to an antibiotic-free animal feed makes it possible to increase the body weight of a subject that ingests the animal feed to a level equal to or higher than those achieved by antibiotic-containing animal feeds, and also makes it possible to reduce pathogenic bacteria in the stomach to a level equal to those achieved by typical antibiotic-containing animal feeds. Accordingly, the composition of the present disclosure can be used for an animal feed which does not need the addition of antibiotics.

0050 In addition, unlike conventional bacteria (Lactobacillus and Bifidobacteria) in commercial use which are not easy to incorporate into the livestock production, the composition of the present invention in the spore form can be pelleted, sprayed, or easily mixed with an animal feed, and also can be added to drinking water.

0051 The feeding of such an animal feed using the composition described herein is not particularly limited, and the animal feed may be fed to a subject at regular intervals in a selective manner, or may be fed for a certain period (for example, at its birth, during weaning, or when the subject to be fed is relocated or shipped).

0052 Moreover, from the above-described viewpoint, the composition of the present disclosure can be preferably used for malnourished humans. In other words, also when the subject who ingests the composition is a human, the composition can be used for promoting the body weight gain, and enhancing the energy absorption from foods.

0053 Food or beverage can be manufactured by a manufacturing technique which is well known in the technical field. To the food or beverage, one or more components (for example, a nutrient) which are effective for the improvement of an immune function by the immunosuppressive effect may be added. In addition, the food or beverage may be combined with another component or another functional food exhibiting a function other than the function of the improvement of an immune function to thereby serve as a multi-functional food or beverage.

0054 Moreover, the composition described herein can be incorporated into foods requiring a processing step which may destroy ordinary probiotic strains. Specifically, most commercially usable probiotic strains cannot be incorporated
into foods which need to be processed by any one of a heat treatment, long term storage, a freezing treatment, a mechanical stress treatment, and a high-pressure treatment (for example, extrusion forming or roll forming). On the other hand, because of an advantageous nature of forming spores, the composition of the present invention can be easily incorporated into such processed foods.

[0055] For example, compositions in the form of spore can survive even in a dried food, and can remain living even after being ingested. Likewise, the composition described herein can withstand low-temperature sterilization processes, typically processes at a temperature in a range from 70°C to the boiling point, both inclusive. Thus, the composition described herein can be incorporated into all kinds of dairy products. Furthermore, the composition described herein can withstand long-term storage of many years; high-temperature processing such as baking and boiling; low-temperature processing such as freezing and cold storage; and high-pressure treatments such as extrusion forming and roll forming.

[0056] The foods which need to be processed under such harsh conditions are not particularly limited, and examples thereof include foods which need to be processed in a microwave oven to be edible (for example, oatmeal), foods which need to be baked to be edible (for example, muffin), foods which need to be subjected to a sterilization high-temperature treatment for a short period of time to be edible (for example, milk), and foods which need to be heated to be drinkable (for example, hot tea).

[0057] When the composition is administered or ingested, the amount thereof for the administration or ingestion is selected as appropriate depending on the age, body weight, symptoms, health conditions, of a subject, the kind of the composition (a pharmaceutical product, a food or beverage, or the like), and the like. For example, the amount per administration or ingestion is generally 0.01 mg/kg body weight to 100 mg/kg body weight, and preferably 1 mg/kg body weight to 10 mg/kg body weight.

[0058] A product of the composition described herein (a pharmaceutical product, a food or beverage, or a reagent) or a manual thereof may be provided with a note stating that the product can be used to suppress the immunity (including a note stating that the product has an immunosuppressive effect, and a note stating that the product has an effect of suppressing the proliferation or function of effector T-cells). Here, the "provision to the product or the manual thereof with the note" means that the note is provided to a main body, a container, a package, or the like of the product, or the note is provided to a manual, a package insert, a leaflet, or other printed matters, which disclose information on the product.

<Method for Inducing Proliferation or Accumulation of Regulatory T Cells>

[0059] As described above, and as will be shown in Examples, the administration of the composition described herein to an individual makes it possible to induce proliferation or accumulation of regulatory T cells in the individual. Thus, the present disclosure includes a method for inducing proliferation or accumulation of regulatory T cells in an individual, the method comprising a step of administering, to the individual, at least one substance selected from the group consisting of the following (a) to (c):

(a) bacteria belonging to the genus Clostridium or a physiologically active substance derived from the bacteria;
(b) a spore-forming fraction of a fecal sample obtained from a mammal or a culture supernatant of the fraction; and
(c) a chloroform-treated fraction of a fecal sample obtained from a mammal or a culture supernatant of the fraction.

[0060] Note that, the "individual" in the present disclosure is not particularly limited, and examples thereof include humans, various kinds of livestock, poultry, pets, experimental animals, and the like. The "individual" may be in a healthy state or a diseased state.

[0061] Moreover, as will be shown in Example 5 to be described later, Gram-positive commensal bacteria play principal roles in the proliferation or accumulation of regulatory T cells. Accordingly, the present disclosure includes a method for inducing proliferation or accumulation of regulatory T cells in an individual, the method comprising a step of administering an antibiotic against Gram-negative bacteria to the individual.

[0062] As used herein, the "antibiotic against Gram-negative bacteria" is not particularly limited, and examples thereof include aminoglycoside antibiotics (aminikacin, gentamicin, kanamycin, neomycin, netilmicin, tobramycin, and paromomycin), cephalosporin antibiotics (cefadroxil, cefamandole, cefoxitin, cefprozil, cefuroxime, cefixime, cefdinir, cefditoren, cefoperazone, cefotaxime, ceftazidime, cefetbuten, ceftriaxone, ceftriaxone, and cefoxitin), sulfonamides, ampicillin, and streptomycin. Without wishing to be bound by theory, the "antibiotic against Gram-negative bacteria" according to the present invention is preferably one which reduces Gram-negative bacteria, and contributes to the colonization of Gram-positive bacteria.

[0063] Moreover, a prebiotic composition such as almond skin, inulin, oligofructose, raffinose, lactulose, pectin, hemicellulose (such as xylloglucan and alpha-glucans), amylpectin, and resistant starch which are not decomposed in the upper gastrointestinal tract and promote the growth of intestinal microbes in the intestinal tract, as well as growth factors such as acetyl-Co A, biotin, beet molasses, and yeast extracts, contribute to the proliferation of bacteria belonging to...
the genus Clostridium. Accordingly, the present disclosure includes a method for inducing proliferation or accumulation of regulatory T cells in an individual, the method comprising a step of administering, to the individual, at least one substance selected from the group consisting of these substances.

Meanwhile, in a "method for inducing proliferation or accumulation of regulatory T cells", the composition of the present disclosure, the above-described "antibiotic against Gram-negative bacteria," and the above-described "prebiotic composition or growth factor" may be used in combination. Such combined use is not particularly limited, and examples of the combined use are as follows: the "antibiotic against Gram-negative bacteria" is administered to an individual in advance, and then the composition of the present invention is administered; the "antibiotic against Gram-negative bacteria" and the composition of the present invention are simultaneously administered to an individual; the "prebiotic composition or growth factor" is administered to an individual in advance, and then the composition of the present invention is administered; the "prebiotic composition or growth factor" and the composition of the present invention are simultaneously administered to an individual; the composition of the present invention, the "antibiotic against Gram-negative bacteria," and the "prebiotic composition or growth factor" are administered to an individual simultaneously or individually at any appropriate time.

Moreover, a therapeutic composition may be administered to an individual together with at least one substance selected from the group consisting of the composition of the present disclosure, the "antibiotic against Gram-negative bacteria," and the "prebiotic composition or growth factor."

Such a therapeutic composition is not particularly limited, and may be at least one therapeutic composition selected from the group consisting of corticosteroids, mesalazine, mesalamine, sulfasalazine, sulfasalazine derivatives, immunosuppressive drugs, cyclosporin A, mercaptopurine, azathiopurine, prednisone, methotrexate, antithistamines, glucocorticoids, epinephrine, theophylline, cromolyn sodium, anti-leukotrienes, anti-cholinergic drugs for rhinitis, anti-cholinergic decongestants, mast-cell stabilizers, monoclonal anti-IgE antibodies, vaccines (preferably, vaccines used for vaccination where the amount of an allergen is gradually increased), and combinations thereof. It is preferable to use these therapeutic compositions in combination with the above-described substance.

Moreover, there is no particular limitation imposed on the combined use of the therapeutic composition with at least one substance selected from the group consisting of the composition of the present disclosure, the "antibiotic against Gram-negative bacteria," and the "prebiotic composition or growth factor". For example, the "one substance" and the therapeutic composition are administered orally or parenterally to an individual simultaneously or individually at any appropriate time.

Moreover, in the above-described "method for inducing proliferation or accumulation of regulatory T cells," whether or not the administration of the composition described herein or the like actually induces the proliferation or accumulation of regulatory T cells can be determined by using, as an index, increase or reinforcement of at least one measurement selected from the group consisting of the number of regulatory T cells, the ratio of regulatory T cells in the T cell group of the colon, a function of regulatory T cells, and expression of a marker of regulatory T cells. It is preferable to use one or more of these indices, as described above.

Note that examples of a method for detecting such expression include the northern blotting, the RT-PCR, and the dot blotting for detection of gene expression at the transcription level; and the ELISA, the radioimmunoassay, the immunoblotting, the immunoprecipitation, and the flow cytometry for detection of gene expression at the translation level.

Meanwhile, a sample used for measuring such an index is not particularly limited, and examples thereof include blood sampled from an individual and tissue pieces obtained in a biopsy.

<Method for Predicting Response of Individual to Composition of Present Invention and/or Prognosis of Individual>

Described herein is a method in which the absolute amount or the ratio of bacteria belonging to the genus Clostridium in a microbiota of an individual is determined, and, when the ratio or the absolute value of the bacteria belonging to the genus Clostridium is reduced in comparison with a base line value obtained by performing a similar determination on an individual in a typical health state, it is determined that the individual is possibly responsive to the composition described herein.

Also described is a method to predict a subject’s response to a substance and/or the subject’s prognosis.

The method comprises measuring the percentage or absolute amounts of Clostridium clusters IV and XIV in the microbiota of the subject and comparing them to a baseline value of the same measurements in a prototypical healthy subject, wherein a decreased absolute amount or percentage level of Clostridium clusters IV and/or XIV indicates that the subject may respond favorably to the compositions described herein.

The method may further comprise measuring the composition of the microbiota of the subject after administration of the substance, wherein an increase in the percentage or absolute number of Clostridium spp. belonging to clusters...
IV. XIV after administration of the compositions of the present invention relative to prior to the administering is a positive indicator of enhanced immunosuppression (or immunoregulation). The measurement of the composition of the subject’s microbiota can be made with techniques known in the art, such as 16sRNA sequencing.

[0075] Note that, in these methods, the substance is at least one substance selected from the group consisting of the following (a) to (e):

(a) bacteria belonging to the genus Clostridium or a physiologically active substance derived from the bacteria;
(b) a spore-forming fraction of a fecal sample obtained from a mammal or a culture supernatant of the fraction;
(c) a chloroform-treated fraction of a fecal sample obtained from a mammal or a culture supernatant of the fraction;
(d) an antibiotic against Gram-negative bacteria; and
(e) at least one substance selected from the group consisting of almond skin, inulin, oligofructose, raffinose, lactulose, pectin, hemicellulose (such as xylolucan and alpha-glucans), amylopectin, acetyl-Co A, biotin, beet molasses, yeast extracts, and resistant starch.

<Method for Inhibiting Proliferation or Accumulation of Regulatory T Cells>

[0076] As will be shown in Example 5 to be described later, Gram-positive commensal bacteria have principal roles in the proliferation or accumulation of regulatory T cells. Accordingly, the present disclosure also includes a method for inhibiting proliferation or accumulation of regulatory T cells in an individual, the method comprising a step of administering an antibiotic against Gram-positive bacteria to the individual.

[0077] As used herein, the term “antibiotic against Gram-positive bacteria” is not particularly limited, and examples thereof include cephalosporin antibiotics (cephalexin, cefuroxime, cefadroxil, cefazolin, cefaclor, cefamandole, cefoxitin, cefprozil, and cefotibiprole); fluoroquinolone antibiotics (cipro, Levaquin, floxin, tequin, avelox, and norflox); tetracycline antibiotics (tetracycline, minocycline, oxytetacycline, and doxycycline); penicillin antibiotics (amoxicillin, ampicillin, penicillin V, dicloxacillin, carbenicillin, vancomycin, and methicillin); and carbapenem antibiotics (ertapenem, doripenem, imipenem/cilastatin, and meropenem).

[0078] As described above, the term “individual” is not particularly limited, and examples thereof include humans, various kinds of livestock, poultry, pets, experimental animals, and the like. The “individual” may be in a healthy state or a diseased state. Such a diseased state is not particularly limited, and examples thereof include states of being subjected to cancer immunotherapy and of suffering from an infectious disease.

[0079] Moreover, as another mode of the “method for inhibiting proliferation or accumulation of regulatory T cells,” the present disclosure includes a method for inhibiting proliferation or accumulation of regulatory T cells in an individual, the method comprising a step of administering, to the individual, any one of an antibody, an antibody fragment, and a peptide, which are against an antigen that is at least one substance selected from the group consisting of the following (a) to (c):

(a) bacteria belonging to the genus Clostridium or a physiologically active substance derived from the bacteria;
(b) a spore-forming fraction of a fecal sample obtained from a mammal or a culture supernatant of the fraction; and
(c) a chloroform-treated fraction of a fecal sample obtained from a mammal or a culture supernatant of the fraction.

<Vaccine Composition and Method for Treating or Preventing Infectious Disease or Autoimmune Disease by Using the Vaccine Composition>

[0080] As described above, and as will be shown in Example 15 to be described later, the induction of Treg cells in the colon by the Clostridium has an important role in local and systemic immune responses. Accordingly, the present disclosure includes a “vaccine composition comprising at least one substance selected from the group consisting of the following (a) to (c) : (a) bacteria belonging to the genus Clostridium; (b) a spore of bacteria in a spore-forming fraction of a fecal sample obtained from a mammal; and (c) bacteria in a chloroform-treated fraction of a fecal sample obtained from a mammal” and a “method for treating, aiding in treating, reducing the severity of, or preventing at least one disease selected from infectious diseases and autoimmune diseases in an individual, the method comprising administering the vaccine composition to the individual.”

[0081] Note that such “autoimmune diseases” are not particularly limited, and examples thereof include those described as the “specific examples of target diseases” in <Composition Having Effect of Inducing Proliferation or Accumulation of Regulatory T Cells>. The “infectious diseases” are also not particularly limited, and examples thereof include infectious diseases associated with “infectious pathogens” described as the “example of infectious pathogens” in <Composition Having Effect of Inducing Proliferation or Accumulation of Regulatory T cells>.
<Method for Screening for Compound Having Activity to Promote Proliferation or Accumulation of Regulatory T Cells>

[0082] Also described is a method for screening for a compound having an activity to promote proliferation or accumulation of regulatory T cells, the method comprising:

1. preparing a test substance from at least one substance selected from the group consisting of the following (a) to (c):

 (a) bacteria belonging to the genus Clostridium or a physiologically active substance derived from the bacteria;
 (b) a spore-forming fraction of a fecal sample obtained from a mammal or a culture supernatant of the fraction; and
 (c) a chloroform-treated fraction of a fecal sample obtained from a mammal or a culture supernatant of the fraction.

2. preparing non-human mammals in which a reporter gene is to be expressed under control of IL-10 gene expression;
3. bringing the test substance into contact with the non-human mammal;
4. after the contact with the test substance, detecting cells expressing the reporter gene in a CD4+ Foxp3+ cell group of the non-human mammal, and determining the number of cells in the CD4+ Foxp3+ cell group expressing the reporter gene or a ratio of cells in the CD4+ Foxp3+ cell group expressing the reporter gene to cells in the CD4+ Foxp3+ cell group not expressing the reporter gene;
5. detecting cells expressing the reporter gene in a CD4+ Foxp3+ cell group of the non-human mammal which has not been in contact with the test substance, and determining the number of cells in the CD4+ Foxp3+ cell group expressing the reporter gene or a ratio of cells in the CD4+ Foxp3+ cell group expressing the reporter gene to cells in the CD4+ Foxp3+ cell group not expressing the reporter gene; and
6. comparing the absolute numbers or the ratios determined in steps (4) with the number or the ratio determined in (5), and determining, when the number or the ratio determined in (4) is greater than that determined in (5), that the test substance is a compound that promotes proliferation or accumulation of Treg cells.

[0083] The term "test substance" as used herein is not particularly limited, as long as the test substance is a substance prepared from at least one substance selected from the group consisting of the substances (a) to (c). Examples of the test substance include proteins, polysaccharides, lipids, and nucleic acids which are derived from at least one substance selected from the group consisting of the above described substances (a) to (c).

[0084] The term "non-human mammal in which a reporter gene is to be expressed under control of IL-10 gene expression" as used herein is not particularly limited, as long as the non-human mammal is a non-human mammal having a reporter gene whose expression is controlled by an IL-10 gene expression control region (for example, a promoter, or an enhancer). Examples of such a reporter gene include genes encoding fluorescent proteins (for example, GFP), and genes encoding luciferase. As the "non-human mammal in which a reporter gene is to be expressed under control of IL-10 gene expression" according to the present invention, an Il10venus mouse to be shown later in Examples can be preferably used.

[0085] The term "contact" as used herein is not particularly limited, and examples thereof include administration of the test substance to the non-human mammal orally or parenterally (for example, intraperitoneal injection, or intravenous injection).

[0086] Also described is a non-human mammal which is used for the method, and in which the reporter gene is to be expressed under the control of the IL-10 gene expression.

[0087] Furthermore, described herein is a method for isolating, from a sample of bacteria belonging to the genus Clostridium, a compound having an activity to promote proliferation or accumulation of regulatory T cells, the method comprising the following steps (1) to (3):

1. preparing a genomic DNA from the sample of bacteria belonging to the genus Clostridium;
2. inserting the genomic DNA into a cloning system, and preparing a gene library derived from the sample of bacteria belonging to the genus Clostridium; and
3. isolating a compound having an activity to promote proliferation or accumulation of regulatory T cells, by use of the gene library obtained in step (2).

[0088] In such steps, methods for the preparation and the isolation are not particularly limited, and known techniques for an in-vitro or in-vivo system can be used as appropriate. Moreover, the compound isolated by this method is not particularly limited, and examples thereof include nucleic acids (for example, a DNA, a mRNA, and a rRNA) derived from bacteria belonging to the genus Clostridium, as well as polypeptides and proteins derived from the bacteria belonging to the genus Clostridium.
Also described is a method for determining the composition of a microbiota in an individual, wherein the increase in the ratio or the absolute number of bacteria belonging to the genus Clostridium after the administration of the composition of the present invention to the individual with respect to the ratio or the absolute number before the administration is used as an index of increased immunosuppression. In such a method, the method for determining the composition of the microbiota is not particularly limited, and known techniques (for example, 16S rRNA sequencing) can be used as appropriate.

Also described is a method for measuring differentiation of Treg cells, wherein the increase in differentiation of Treg cells in an individual after administration of the composition described herein to the individual with respect to that before the administration is used as an index of increased immunosuppression (or immunoregulation).

Moreover, the composition described herein can also be administered to an individual under an antibiotic treatment. The timing of the administration is not particularly limited, and the composition can be administered before or simultaneously with the antibiotic treatment, for example. Meanwhile, the composition is preferably administered in the spore form from the viewpoint of resistance to antibiotics.

Moreover, in a preferred mode of such administration, the composition is administered after or simultaneously with administration of an antibiotic against Gram-positive bacteria, for example. Note that such an "antibiotic against Gram-positive bacteria" is not particularly limited, and examples thereof include cephalosporin antibiotics (cephalexin, cefuroxime, cefadroxil, cefazolin, cephalothin, cefaclor, cefamandole, cefoxitin, cefprozil, and ceftobiprole); fluoroquinolone antibiotics (cipro, Levaquin, floxin, tequin, avelox, and norflox); tetracycline antibiotics (tetracycline, minocycline, oxytetracycline, and doxycycline); penicillin antibiotics (amoxicillin, ampicillin, penicillin V, dicloxacillin, carbencillin, vancomycin, and methicillin); and carbapenem antibiotics (ertapenem, doripenem, imipenem/clastatin, and meropenem).

Meanwhile, in another preferred mode of such administration, the composition is administered after (or simultaneously with) a treatment using vancomycin, metronidazole, linezolid, ramoplanin, or fidaxomicin, for example.

Hereinafter, the present invention is described more specifically on the basis of Examples. However, the present invention is defined in the claims.

Note that mice used in Examples were prepared or produced as follows. In the following description, mice may be referred to with "SPF" or "GF" attached in front thereof. These "SPF" and "GF" indicate that the mice were maintained in the absence of specific pathogenic bacteria (specific pathogen-free, SPF), and that the mice were maintained under Germ-Free (GF) conditions, respectively.

C57BL/6, Balb/c, and IQI mice maintained under SPF or GF conditions were purchased from Sankyo Labo Service Corporation, Inc. (Japan), JAPAN SLC, INC. (Japan), CLEA Japan, Inc. (Japan), or The Jackson Laboratory (USA). GF mice and gnotobiotic mice were bread and maintained within the gnotobiotic facility of The University of Tokyo, Yakult Central Institute for Microbiological Research, or Sankyo Labo Service Corporation, Inc. Myd88-/-, Rip2-/-, and Card9-/-mice were produced as described in Non-Patent Documents 1 to 3, and backcrossed for 8 generations or more, so that a C57BL/6 genetic background was achieved. Foxp3eGFP mice were purchased from the Jackson Laboratory.

To form a bicistronic locus encoding both Il10 and Venus under control of an Il10 promoter, a targeting construct was first created. Specifically, a cassette (IRES-Venus-SV40 polyA signal cassette, refer to Non-Patent Document 4) which was made of an internal ribosome entry site (IRES), a yellow fluorescent protein (Venus), and a SV40 polyA signal (SV40 polyA) and which was arranged next to a neomycin-resistant gene (neo), was inserted between a stop codon and a polyA signal (Exon 5) of a Il10 gene. Next, the obtained targeting construct was used to cause homologous recombination with the Il10 gene region in the genome of mice. Thus, Il10venus mice having an Il10venus alleles were produced (refer to Fig. 1). Note that in Fig. 1 "tk" represents a gene coding thymidine kinase, "neo" represents the neomycin-resistant gene, and "BamH1" represents a cleavage site by the restriction enzyme BamH1.

Genomic DNAs were extracted from the Il10venus mice, treated with BamH1, and Southern blotted by use of a probe shown in Fig. 1. Fig. 2 shows the obtained results. Wild-type and Il10venus alleles were detected as bands having
sizes of 19 kb and 5.5 kb, respectively. Hence, as is apparent from the results shown in Fig. 2, it was found that the homologous recombination shown in Fig. 1 occurred in the genome of the IL10venus mice.

Further, CD4+ Venus+ cells or CD4+ Venus+ cells in the colonic lamina propria of the IL10venus mice were sorted by use of a FACSAria. Then, real-time RT-PCR was carried out on an ABI 7300 system by a method to be described later, to determine the amount of IL-10 mRNA expressed. Figs. 3 and 4 show the obtained results. As is apparent from the results shown in Figs. 3 and 4, it was found that, since the development of the IL-10 mRNA was detected only in the CD4+ Venus+ cells, the expression of IL-10 mRNA in the IL10venus mice was correctly reflected in the expression of Venus. Note that the germ-free states of such IL10venus mice were established in Central Institute for Experimental Animals (Kawasaki, Japan). The IL10venus mice in the germ-free states were maintained in vinyl isolators in Sankyo Labo Service Corporation, Inc. (Tokyo, Japan), and used in the following Examples.

Meanwhile, experiments and analyses in Examples were carried out as follows.

<Method for Colonization of Mice with Bacteria and Analysis Thereof>

According to the description in Non-Patent Documents 5 and 6, mice in which SFB or Clostridium were colonized were produced. Cecal contents or feces of the obtained gnotobiotic mice were dissolved in sterile water or an anaerobic dilution solution. The dissolved cecal contents or feces as they were or after a chloroform treatment were orally administered to GF mice. Three strains of the Lactobacillus and 16 strains of the Bacteroides were cultured separately from each other in a BL or EG agar medium in an anaerobic manner. The cultured bacteria were harvested, suspended in an anaerobic TS broth, and orally administered forcibly to GF mice. The state of the colonization of the bacteria in the mice was assessed by microscopic observation conducted on a smear preparation of fecal pellets.

<Cell Separation and Flow Cytometry>

In order to isolate lymphocytes from the colonic lamina propria and the small intestinal lamina propria, the small intestine and the colon were collected, and cut open longitudinally. Then, fecal content and the like thereininside were washed to remove. Subsequently, the small intestine and the colon were shaken in HBSS containing 5 mM of EDTA at 37°C for 20 minutes. After removal of epithelium and fat tissue, the intestinal tissues were cut into small pieces. To the small pieces, RPMI 1640 (4% fetal bovine serum (FBS), 1 mg/ml of collagenase D, 0.5 mg/ml of dispase, and 40 μg/ml of DNaseI (all of which were manufactured by Roche Diagnostics K.K.)) were added, and the mixture was shaken in a water bath kept at 37°C for 1 hour. The digested tissues were washed with HBSS containing 5 mM of EDTA, and resuspended in 5 ml of 40% percoll (GE Healthcare). The suspension was overlayed on 2.5 ml of 80% percoll in a 15-ml Falcon tube. Then, centrifugation was carried out at room temperature and at 2000 rpm for 20 minutes to conduct cell separation by percoll density gradient centrifugation. Cells at the interface were collected, and used as lamina propria lymphocytes. The collected cells were suspend in a staining buffer (PBS, 2% FBS, 2 mM EDTA, and 0.09% NaN₃), and stained by use of an anti-CD4 antibody (RM4-5, BD Biosciences) labeled with PE or PE-Cy7. After the staining of CD4, Foxp3 in the cells were stained by use of Cytofix/Cytoperm Kit Plus with Golgistop (BD Biosciences) or Foxp3 Staining Buffer Set (eBioscience), as well as an anti-Foxp3 antibody (FJK-16s, eBioscience) labeled with Alexa647. Flow cytometry was performed by use of a FACScant II, and the data were analyzed by FlowJo software (TreeStar Inc.). The sorting of the cells were performed by use of a FACSAria.

<Real-Time RT-PCR>

From an RNA prepared by using RNeasy Mini Kit (Qiagen), a cDNA was synthesized by use of a MMV reverse transcriptase (Promega KK). The obtained cDNA was analyzed by real-time RT-PCR using Power SYBR Green PCR Master Mix (Applied Biosystems) and ABI 7300 real time PCR system (Applied Biosystems), or real-time RT-PCR using SYBR Premix Ex Taq (TAKARA) and Light Cycler 480. For each sample, a value obtained was normalized for the amount of GAPDH. A primer set was designed by using Primer Express Version 3.0 (Applied Biosystems), and those exhibiting a 90% or higher sequence identity at an initial evaluation were selected. The primer set used was as follows:

F1: 5'-GGCAATAGTTCCCTCCAGAGTT-3' (SEQ ID NO: 1)
F2: 5'-GGGTCGCATATTGTGGTACTTG-3' (SEQ ID NO: 2)
F3: 5'-CTTTTGTAGCCCTGCTCACTCT-3' (SEQ ID NO: 3)
First, the colon was collected, cut open longitudinally, and rinsed with PBS. Subsequently, the colon was treated with 1mM dithiothreitol (DTT) at 37°C for 30 minutes on a shaker, and then vortexed for one minute to disrupt the epithelial integrity. The released IECs were collected, and suspended in 5 ml of 20% percoll. The suspension was overlaid on 2.5 ml of 80% percoll in a 15-ml Falcon tube. Then, the tube was centrifuged at 25°C and 780 g for 20 minutes to conduct cell separation by percoll density gradient centrifugation. Cells at the interface were collected, and used as colonic IECs (purity: 90% or higher, viability: 95%). The obtained IECs thus collected were suspended in RPMI containing 10% FBS, and 1 × 10^5 cells of the IECs were cultured in a 24-well plate for 24 hours. Thereafter, the culture supernatant was collected, and measured for active TGF-β1 level by ELISA (Promega).

Meanwhile, for culturing T cells in vitro, 1.5 × 10^5 MACS-purified splenic CD4^+ T cells were cultured in each well of a round-bottomed 96-well plate, together with a 50% conditioned medium in which IECs isolated from GF mice or Clostridium-colonized mice were cultured, and with 25 ng/ml of hIL-2 (Peprotech), in the presence or absence of 25 μg/ml of an anti-TGF-β antibody (R&D). Note that 10 μg/ml of an anti-CD3 antibody and an anti-CD28 antibody (BD Bioscience) were bound to the round-bottomed plate. After a 5-day culture, the CD4^+ T cells were collected, and subjected to a real-time PCR.

A fecal suspension of Clostridium-colonized mice was orally administered to C57BL/6 mice (2-week old), and grown in a conventional environment for six weeks.
For preparing a DSS-induced colitis model, 2% (wt/vol) DSS (reagent grade, DSS salt, molecular weight = 36 to 50 kD, manufactured by MP Biomedicals), together with drinking water, was given to the mice for six days.

Meanwhile, for preparing an oxazolone-induced colitis model, the mice were presensitized by transdermally applying, onto the mice, 150 μl of a 3% oxazolone (4-ethoxymethylene-2-phenyl-2-oxazolin-5-one, Sigma-Aldrich)/100% ethanol solution. Five days after that, 150 μl of a 1% oxazolone/50% ethanol solution was intrarectally administered again to the presensitized mice under a light anesthesia. Note that the intrarectal administration was conducted by using a 3.5F catheter.

Each mouse was analyzed daily for body weight, occult blood, bleeding visible with the naked eyes (gross blood), and the hardness of stool. Moreover, the body weight loss percentage, intestinal bleeding (no bleeding, occult blood (hemoccult+), or bleeding visible with the naked eyes), and the hardness of stool (normal stool, loose stool, or diarrhea) were evaluated numerically, and the disease activity index (DAI) was calculated in accordance with the description in "S. Wirtz, C. Neufert, B. Weigmann, M. F. Neurath, Nat Protoc 2, 541 (2007)."

BALB/c SPF mice were inoculated with a fecal suspension of Clostridium-colonized mice (2-week old), and grown in a conventional environment. Then, 1 μg of OVA (grade V, Sigma) and 2 mg of alum (Thermo Scientific), 0.2 ml in total, were intraperitoneally injected to the mice (at their ages of 4 weeks and 6 weeks). Sera were collected every week from the mice at the root of their tail, and OVA-specific IgE was measured by ELISA (Chondrex). Then, at their ages of 8 weeks, splenic cells were collected, inoculated in a 96-well plate at 1 × 10⁶ cells per well, and stimulated with OVA (100 μg/ml) for three days. Thereafter, the culture supernatant was collected, and measured for IL-4 and IL-10 levels by ELISA (R&D).

The difference between control and experimental groups was evaluated by the Student's t-test.

First, it was investigated whether or not accumulation of regulatory T cells (Treg cells) in the colonic lamina propria was dependent on commensal bacteria. Specifically, lymphocytes were isolated from peripheral lymph nodes (pLN) of Balb/c mice bred in the absence of specific pathogenic bacteria (SPF) or from lamina propria of the colon or the small intestine (SI) of the mice. The CD4 and Foxp3 were stained by antibodies. Then, the ratio of Foxp3+ cells in CD4+ lymphocytes was analyzed by flow cytometry. Fig. 5 shows the obtained results. As is apparent from the results shown in Fig. 5, it was found that Foxp3+ Treg cells were present at a high frequency in the lamina propria of the gastrointestinal tracts, especially in the colonic lamina propria, of the mice kept under the environment free from specific pathogenic microorganisms (SPF). In addition, it was also found that the number of the Foxp3+ Treg cells in the colonic lamina propria gradually increased up to three months after their birth, whereas the number of the Foxp3+ Treg cells in the peripheral lymph nodes was basically constant from the time of two weeks after their birth.

Next, it was investigated whether or not the temporal accumulation of the Treg cells in the colon as found in Example 1 had a relationship with the colonization of intestinal commensal microbiota. Specifically, the expression of CD4 and the expression of Foxp3 in lymphocytes isolated from the small intestine, the colon, and the peripheral lymph nodes of mice bred under a germ-free (GF) or SPF environment (8 weeks old: Balb/c mice, IQI mice, and C57BL/6 mice) were analyzed. Similar results were obtained in three or more independent experiments. Figs. 6 and 7 show the obtained results. Note that, in Fig. 7, each white circle represents the absolute number of CD4+Foxp3+ cells in an individual mouse, and the error bars represent standard deviations (SDs).

In addition, lamina propria lymphocytes were collected from SPF mice and GF mice (Balb/c mice or C57BL/6 mice). CD4 and Foxp3 were stained with antibodies. Then, the lamina propria lymphocytes were analyzed by FACS. Fig. 8 shows the obtained results. Note that in Fig. 8 each white circle represents the absolute number of CD4+Foxp3+ cells in an individual mouse, ** indicates that "P < 0.001", and * indicates that "P < 0.01."

Further, lymphocytes were isolated from the lamina propria of the colon, the lamina propria of the small intestine (SI), Peyer’s patches (PPs), and mesenteric lymph nodes (MLNs) of mice (SPF C57BL/6 mice) to which antibiotics were orally administered with water for eight weeks. CD4 and Foxp3 were stained with antibodies. Then, the lymphocytes were analyzed by FACS. Similar results were obtained in two or more independent experiments. Fig. 9 shows the obtained results (the ratio of the Foxp3+ cells in the CD4+ cells of an individual mouse). Note that the following antibiotics
were used in combination in accordance with the description in the following document: ampicillin (A; 500 mg/L, Sigma) vancomycin (V; 500 mg/L, NACALAI TESQUE, INC.) metronidazole (M; 1g/L, NACALAI TESQUE, INC.) neomycin (N; 1g/L, NACALAI TESQUE, INC.)

In Fig. 9, each white circle represents the absolute number of the CD4+ Foxp3+ cells in an individual mouse, each horizontal bar represents the average value of the absolute numbers, “*” indicates that “P < 0.01,” and “AVMN” represents the kinds of the administered antibiotics by using the first letters of the antibiotics.

[0117] As is apparent from the results shown in Figs. 6 to 9, the frequencies and the absolute numbers of Foxp3+ CD4+ cells in the small intestine and the peripheral lymph nodes of the GF mice were equal to or greater than those of the SPF mice (refer to Figs. 6 to 8). In addition, the numbers of the Treg cells in the small intestinal lamina propria, Peyer’s patches, and mesenteric lymph nodes of the SPF mice to which the antibiotics were orally administered for eight weeks were equal to or greater than those of the SPF mice (refer to Fig. 9). Meanwhile, the number of the Foxp3+ CD4+ cells in the colonic lamina propria of the GF mice was decreased significantly in comparison with that of the SPF mice (refer to Figs. 6 and 7). This decrease was commonly observed among mice of different genetic backgrounds (Balb/c, IQI, and C57BL/6), as well as among mice bred in different animal facilities (refer to Fig. 7 for the data regarding the different genetic backgrounds, the data regarding the mice bred in the different animal facilities are not shown in the drawings).

In addition, it was also shown that the number of Treg cells in the colonic lamina propria of the SPF C57BL/6 mice to which the antibiotics were administered was decreased significantly (refer to Fig. 9).

(Example 3)

[0118] Next, it was directly checked whether or not the decrease in the number of the Treg cells in the colonic lamina propria of the GF mice shown in Example 2 was attributed to the absence of microbiota. Specifically, a fecal suspension of B6 SPF mice purchased from The Jackson Laboratory was orally administered to GF-IQI mice (conventionalization). Three weeks after the administration, lymphocytes were isolated from the colonic lamina propria, and the expression of Foxp3 in CD4+ lymphocytes was analyzed. Figs. 10 and 11 show the obtained results. Note that each white circle in Fig. 11 represents the absolute number of CD4+ Foxp3+ cells in an individual mouse, the error bars represent standard deviations (SD), “*” indicates that “P < 0.01” in Student’s t-test, and “**” indicates that “P < 0.001.” As is apparent from the results shown in Figs. 10 and 11, the number of Treg cells in the small intestinal lamina propria did not change. However, the number of the Treg cells in the colonic lamina propria increased significantly. Hence, it was shown that host-microbial interaction played an important role in the accumulation of Foxp3+ Treg cells in the colonic lamina propria, while the accumulation of the Treg cells in the small intestinal lamina propria had a different mechanism.

(Example 4)

[0119] Next, the relationship between the gut-associated lymphoid tissues of mice and the number of Foxp3+ cells in the colonic lamina propria of the mice was investigated in accordance with the method described in M. N. Kweon et al., J Immunol 174, 4365 (Apr 1, 2005). Specifically, 100 μg of an extracellular domain recombinant protein (a fusion protein (LTβR-Ig) between a lymphotoxin β receptor (ETβP) and a Fc region of human IgG1, refer to Honda et al., J Exp Med 193, 621 (Mar 5, 2001)) was injected intraperitoneally into pregnant C57BL/6 mice 14 days after conception. The ETβP-Ig was again injected intraperitoneally into fetuses obtained from such mice, so that mice from which isolated lymphoid follicles (ILFs), Peyer’s patches (PPs), and colonic-patches (CPs) were completely removed were produced. Then, the ratios of Foxp3+ cells in CD4+ cells in the colonic lamina propria of the mice treated with the LTβR-Ig, and mice treated with rat IgG (control) were analyzed by FACS. Fig. 12 shows the obtained results. Note that in Fig. 12 each white circle represents the ratio of Foxp3+ cells in an individual mouse, and the error bars represent standard deviations. As is apparent from the results shown in Fig. 12, it was found that the ratio of the Foxp3+ cells in the colonic lamina propria of the mice deficient in isolated lymphoid follicles, Peyer’s patches, and the colonic-patches (the mice treated with the LTβR-Ig) rather increased. Accordingly, it was suggested that the decrease in the number of the Treg cells in the colonic lamina propria of the GF mice and the mice treated with the antibiotics was caused because the transmission of specific signals which promotes the accumulation of Treg cells in the colonic lamina propria and which is caused by the intestinal microbes did not occur, rather than simply because of a secondary effect of disorganized gut-associated lymphoid tissues.

(Example 5)

[0120] To investigate whether or not a specific intestinal flora induced the accumulation of colonic Treg cells, vancomycin as an antibiotic against Gram-positive bacteria or polymyxin B as an antibiotic against Gram-negative bacteria was administered to SPF mice (for 4 weeks of age) for four weeks, and analyzed for the ratio of Foxp3+ cells in the...
CD4+ cell group ($\%$ Foxp3+ in CD4). Fig. 30 shows the obtained results. Note that, in Fig. 30, "SPF" indicates the result of SPF mice (control), "poly B" indicates the result of the SPF mice to which polymyxin B was administered, and "Vancom." indicates the result of the SPF mice to which vancomycin was administered. Meanwhile, * indicates that "P < 0.01."

[0121] As is apparent from the results shown in Fig. 30, the number of Treg cells in the colon of the mouse to which vancomycin was administered was markedly decreased in comparison with that of the control. In contrast, no influence was observed on the number of Treg cells of the mice to which polymyxin B was administered. Those facts suggested that Gram-positive commensal bacteria played a major role in accumulation of Treg cells.

(Example 6)

[0122] A recent report has suggested that spore-forming bacteria play an important role in intestinal T cells response (see V. Gaboriau-Routhiau et al., Immunity 31, 677 (Oct 16, 2009)). In this respect, fecal microorganisms (spore-forming fraction) resistant to 3% chloroform were orally administered to GF mice, which were then analyzed for the ratio of Foxp3+ cells in the CD4+ cell group ($\%$ Foxp3+ in CD4). Fig. 31 shows the obtained results. Note that, in Fig. 31, "GF" indicates the result of GF mice, and "+chloro" indicates the result of the GF mice to which the chloroform-treated feces were administered. Meanwhile, ** indicates that "P < 0.001."

[0123] As is apparent from the results shown in Fig. 31, three weeks after the administration of the chloroform-treated feces, the number of Treg cells in the administered mice was markedly increased to the same level as those of the SPF mice and the GF mice to which the untreated feces was forcibly administered (see Figs. 7 and 11).

[0124] Accordingly, considering the results shown in Example 5 in combination, it was revealed that the specific components of the indigenous microbiota were highly likely to belong to the Gram-positive group, and that the spore-forming fraction played an important role in the induction of Treg cells.

(Example 7)

[0125] Next, the species of the intestinal microbiota which induced the accumulation of Treg cells in the colon as suggested in Examples 4 to 6 were identified. Specifically, segmented filamentous bacteria (SFB), 16 strains of the Bacteroides spp. (Bactero. (6 strains of B. vulgatus, 7 of the B. acidifaciens group 1, and 3 of the B. acidifaciens group 2)), 3 strains of the Lactobacillus (Lacto. (L. acidophilus, L. fermentum, and L. murinum)), and 46 strains of Clostridium spp. (Clost., refer to "Itoh, K., and Mitsuoka, T. Characterization of clostridia isolated from faeces of limited flora mice and their effect on caecal size when associated with germ-free mice. Lab. Animals 19: 111-118 (1985)"); or microbiota collected from mice (SPF) bred under a conventional environment was orally administered to GF-Balb/c mice or GF-IQI mice. The mice were maintained in vinyl isolators for three weeks. Then, CD4 cells were isolated from the colon and the small intestine of these mice. The numbers of Treg cells in the colon and the small intestine were analyzed by flow cytometry.

[0126] Fig. 13 shows FACS dot-plots obtained when a gate was set on CD4+ cells of the Balb/c mice. Fig. 14 shows the ratio of Foxp3+ cells in CD4+ cells of each mouse.

[0127] Note that, the bacteria belonging to the genus Clostridium are classified by sequencing of 16S rRNA gene, as follows. Specifically, the 16S rRNA genes of the bacteria were amplified by PCR using 16S rRNA gene-specific primer pairs: 5'-AGAGTTTGATCMTGGCTCAG-3' (SEQ ID NO: 19) and 5'-ATTACCGCGGCKGCTG-3' (SEQ ID NO: 20) (see T. Aebischer et al., Vaccination prevents Helicobacter pylori-induced alterations of the gastric flora in mice. FEMS Immunol. Med. Microbiol. 46,221-229(2006)). The 1.5-kb PCR product was then introduced into pCR-Blunt Vector. The inserts were sequenced and aligned using the ClustalW software program. The resulting sequences of 16S rRNA genes derived from strain 1-41 of 46 strains of Clostridium spp. were shown in SEQ ID NO: 21-61. Phylogenetic tree which was constructed by the neighbor-joining method with the resulting sequences of the 41 strains of Clostridium and those of known bacteria obtained from Genbank database using Mega software was shown in Fig.49.

[0128] As is apparent from the results shown in Figs. 13 and 14, no effect on the number of the Treg cells in the colon was observed in the GF mice in which the segmented filamentous bacteria (SFB) were colonized (refer to Fig. 14). Moreover, mice in which the cocktail of three strains of Lactobacillus was colonized gave similar results (refer to Fig. 14). On the other hand, it was shown that the accumulation of Foxp3+ cells in the colonic lamina propria was strongly induced in the mice in which 46 strains of Clostridium spp. were colonized. Importantly, such accumulation was promoted irrespective of the genetic backgrounds of the mice, and led to the increase in number similar to that in the SPF mice although intestinal microbiota of only a single genus were colonized. It was also shown that the colonization of the Clostridium did not change the number of Treg cells in the small intestinal lamina propria (refer to Fig. 14). Note that, when the 16 strains of Bactericides spp. were colonized, the number of Treg cells in the colon was increased significantly. However, the extent of the increase varied depending on the genetic background of the mice in which the bacteria were colonized (refer to Figs. 13 and 14).
Next, CD4 expression, Foxp3 expression, and Helios expression in LP lymphocytes of the thymuses and the colons of SPF mice, GF mice, Lactobacillus-colonized mice, and Clostridium-colonized mice were analyzed by flow cytometry.

Figs. 32 and 33 show the obtained results. Note that, in Figs. 32 and 33, "GF" or "Germ Free" indicates the results of the GF mice, "SPF" indicates the results of the SPF mice, "Lacto." indicates the results of the Lactobacillus-colonized mice, and "Clost." indicates the results of the Clostridium-colonized mice. Meanwhile, * indicates that "P < 0.02," and ** indicates that "P < 0.001."

As is apparent from the results shown in Figs 32 and 33, most Foxp3+ cells found in the SPF mice or the Clostridium-colonized mice did not express Helios. Note that Helios is a transcription factor known to be expressed in thymic-derived natural Treg cells (see A. M. Thornton et al., J Immunol 184, 3433 (Apr 1, 2010)). Accordingly, it was suggested that most of the Treg cells in the SPF mice and the Clostridium-colonized mice were Treg cells induced in peripheral portions, i.e., so-called iTreg cells.

Next, intestinal epithelial cells (IECs) of GF mice and Clostridium-colonized mice were cultured for 24 hours, and the culture supernatants thereof were measured for the concentration of active TGF-β1) by ELISA (the number of mice analyzed was four per group) . Fig. 34 shows the obtained results. Note that, in Fig. 34, "GF" indicates the result of the GF mice, "Clost." indicates the result of the Clostridium-colonized mice, and "Lacto." indicates the result of Lactobacillus-colonized mice. Meanwhile, * indicates that "P < 0.02," and ** indicates that "P < 0.001."

It has been reported that 46 strains of Clostridium spp. exert an influence on the accumulation of CD8+ intestinal tract intraepithelial lymphocytes (IELs) in the colon. Accordingly, it is conceivable that Clostridium regulates the immune system in various aspects, and that Clostridium exhibits a marked ability to induce and maintain Treg cells especially in the colon, as described above. In addition, a kind of cytokines, transforming growth factor-β (TGF-β), is known to play an important role in regulation of Treg cell generation.

In this respect, it was examined whether or not the colonization of Clostridium provided a colonic environment rich in TGF-β. Specifically, first, the whole colons of GF mice, Clostridium-colonized mice, and Lactobacillus-colonized mice were cultured for 24 hours, and the culture supernatants thereof were measured for the concentration of active TGF-β (TGF-β1) by ELISA (the number of mice analyzed was four per group) . Fig. 34 shows the obtained results. Note that, in Fig. 34, "GF" indicates the result of the GF mice, "Clost." indicates the result of the Clostridium-colonized mice, and "Lacto." indicates the result of Lactobacillus-colonized mice. Meanwhile, * indicates that "P < 0.02," and ** indicates that "P < 0.001."

As is apparent from the results shown in Fig. 34, the amount of TGF-β produced in the colons of the Clostridium-colonized mice was significantly larger than those of the GF mice and the Lactobacillus-colonized mice.

Next, intestinal epithelial cells (IECs) of GF mice and Clostridium-colonized mice were cultured for 24 hours, and the culture supernatants thereof were measured for the concentration of active TGF-β (TGF-β1) by ELISA (the number of mice analyzed was four per group) . Fig. 35 shows the obtained results. Note that, in Fig. 35, "GF" indicates the result of the GF mice, and "Clost." indicates the result of the Clostridium-colonized mice. Meanwhile, ** indicates that "P < 0.001."

As is apparent from the results shown in Fig. 35, TGF-β was detected in the culture supernatant of the IECs isolated from the Clostridium-colonized mice, whereas no TGF-β was detected in the culture supernatant of the IECs isolated from the GF mice.

Next, as described above, splenic CD4+ T cells were cultured for five days together with a 50% conditioned medium in which IECs isolated from the GF mice or the Clostridium-colonized mice were cultured, and with the anti-CD3 antibody, in the presence or absence of an anti-TGF-β antibody. Then, the T cells were collected, and analyzed.
for expression of Foxp3 by real-time RT-PCR. Fig. 36 shows the obtained results. Note that, in Fig. 36, "Medium" indicates the result of a medium in which no cells were cultured, "GF" indicates the result of the conditioned medium in which the IECs of the GF mice were cultured, "Clost." indicates the result of the conditioned medium in which the IECs of the Clostridium-colonized mice were cultured, and "Clost. + αTGF-β" indicates the result of the conditioned medium to which the anti-TGF-β antibody was added and in which the IECs of the Clostridium-colonized mice were cultured. Meanwhile, "**" indicates that "P < 0.001."

As is apparent from the results shown in Fig. 36, when the culture supernatant of the IECs derived from the Clostridium-colonized mice was added to the splenic CD4+ T cells, the differentiation into Foxp3-expressing cells was accelerated. Meanwhile, the differentiation into the Treg cells was inhibited by the anti-TGF-β antibody.

Moreover, the expression of MMP2, MMP9, and MMP13, which are thought to contribute to the activation of latent TGF-β was investigated. The expression of indoleamine 2,3-dioxygenase (IDO), which is thought to be involved in the induction of Treg cells, was also investigated. Specifically, 46 bacterial strains of the genus Clostridium (Clost.), or three bacterial strains of the genus Lactobacillus (Lacto.) were orally administered to C57BL/6 germ-free mice. Three weeks after the administration, IECs were collected, and analyzed for relative mRNA expression levels of MMP2, MMP9, MMP13, and IDO genes by real-time RT-PCR (the number of mice analyzed was three per group). Figs. 37 to 40 show the obtained results. Note that, in Figs. 37 to 40, "GF#1 to 3" indicate the results of GF mice, "Clost.#1 to 3" indicate the results of the Clostridium-colonized mice, and "Lacto.#1 to 3" indicate the results of the Lactobacillus-colonized mice.

For the relationship between the activation of latent TGF-β and the above-describe MMP, see D’Angelo et al., J. Biol. Chem. 276, 11347-11353, 2001; Heidinger et al., Biol. Chem. 387, 69-78, 2006; Yu et al., Genes Dev. 14, 163-176, 2000. For the relationship between IDO and the induction of Treg cells, see G. Matteoli et al., Gut 59, 595 (May, 2010).

As is apparent from the results shown in Figs 37 to 39, in agreement with the production of TGF-β described above, transcription products of the genes encoding MMP2, MMP9, and MMP13 were expressed at higher levels in the IECs derived from the Clostridium-colonized mice than those in the GF mice and in the Lactobacillus-colonized mice.

Moreover, as is apparent from the results shown in Fig. 40, IDO was expressed only in the Clostridium-colonized mice.

Accordingly, it was revealed that the Clostridium activated the IECs, and led to the production of TGF-β and other Treg cell-inducing molecules in the colon.

Next, it was investigated whether or not the Treg cell accumulation induced by the colonization of the Clostridium was dependant on signal transmission by pathogen-associated molecular pattern recognition receptors. Specifically, the numbers of Treg cells in the colonic lamina propria of each of SPF mice of Myd88+/- (deficient in Myd88 (signaling adaptor for Toll-like receptor)), Rip2-/- (deficient in Rip2 (NOD receptor adaptor)), and Card9-/- (deficient in Card9 (essential signal transmission factor for Dectin-1 signal transmission)) were examined. In addition, Clostridium spp. were caused to be colonized in the Myd88-/-GF mice, and the change in the number of Treg cells was investigated. Figs. 17 and 18 show the obtained results. As is apparent from the results shown in Figs. 17 and 18, the number of Treg cells of each kind of the SPF mice deficient in the associated factors of the pathogen-associated molecular pattern recognition receptors did not change relative to that of wild-type mice of the same litter, which served as a control. In addition, it was found that also when Clostridium spp. were colonized in GF mice deficient in Myd88, the accumulation of Treg cells in the colonic lamina propria was induced. Accordingly, it has been suggested that the mechanism of inducing the accumulation of Treg cells in the colonic lamina propria relies not on activation of recognition pathway for major pathogen-associated molecular patterns as is caused by most of bacterium, but on specific commensal bacterial species.

Intestinal tract Foxp3+ Treg cells are known to exert some immunosuppressive functions through IL-10 production (refer to Non-Patent Document 9). Meanwhile, animals having CD4+ Foxp3+ cells from which IL-10 is specifically removed are known to develop inflammatory bowel disease (refer to Non-Patent Document 18). In this respect, first, the expression of IL-10 in lymphocytes of various tissues was examined. Specifically, lymphocytes were isolated from various tissues of SPF II10venus mice, and the expression of CD4 and the expression of Venus were analyzed by flow cytometry. Fig. 19 shows the obtained results. Note that each numeric value in Fig. 19 represents the ratio of cells within the corresponding one of regions divided into four.

Moreover, lymphocytes in the colonic lamina propria were isolated from II10venus mice, and the expression of T cell receptor β chain (TCRβ) on the surfaces of the cells was detected by FACS. Fig. 20 shows the obtained results (FACS dot-plots obtained when a gate was set on CD4+ cells). Note that each numeric value in Fig. 20 represents the ratio of cells within the corresponding one of regions divided into four.
were stimulated with PMA (50 ng/ml) and ionomycin (1 μg/ml) for four hours in the presence of Golgistop (BD Bioscience). Then, after the stimulation was given, intracellular cytokines were stained by using an anti-IL-17 PE antibody, an anti-IL-4 APC antibody (11B11), and an anti-IFN-γ FITC antibody (BD Bioscience) in accordance with the manual of a cytotox/cytopermit kit (BD Bioscience). Fig. 21 shows the obtained results (FACS dot-plots obtained when a gate was set on CD4+ cells).

Note that each numeric value in Fig. 21 represents the ratio of cells within the corresponding one of regions divided into four.

In addition, Foxp3+ CD4+ cells and Foxp3+ CD4+ cells were isolated from the spleen (Spl) of Foxp3eGFP reporter mice, and Venus+ cells were isolated from the colonic lamina propria and the small intestine (SI) lamina propria of IL10venus mice. Then, the obtained cells were analyzed in terms of the expression of predetermined genes. The gene expression was analyzed by real-time RT-PCR using a Power SYBR Green PCR Master Mix (Applied Biosystems) and an ABI 7300 real time PCR system (Applied Biosystems). Here, the value for each cell was normalized for the amount of GAPDH. Fig. 22 shows the obtained results. Note that in Fig. 22 the error bars represent standard deviations. As is apparent from the results shown in Figs. 19 to 22, almost no Venus+ cells (IL-10-producing cells) were detected in the cervical lymph nodes (peripheral lymph nodes), thymus, peripheral blood, lung, and liver of mice kept under the SPF conditions. Meanwhile, in the spleen, Peyer’s patches, and mesenteric lymph nodes thereof, Venus+ cells were slightly detected (refer to Fig. 19). On the other hand, many Venus+ cells were found in the lymphocytes in the small intestine lamina propria and colonic lamina propria. In addition, most of the Venus+ cells in the intestines were positive for CD4, and also positive for T cell receptor β chain (TCRβ) (refer to Figs. 19 and 20). Moreover, it was found that the Venus+ CD4+ T cells expressed Foxp3 and other Treg cell-associated factors such as a cytotoxic T-Lymphocyte antigen (CTLA-4) and a glucocorticoid-induced TNFR-associated protein (GITR) although the Venus+ CD4+ T cells showed none of the phenotypes of Th2 (IL-4-producing) and Th17 (IL-17-producing) (refer to Figs. 21 and 22). In addition, it was shown that the expression level of CTLA-4 in the intestinal Venus+ cells was higher than that in the splenic GFP+ Treg cells isolated from the Foxp3eGFP reporter mice (refer to Fig. 22).

Venus+ cells can be classified into at least two subsets, namely, Venus+ Foxp3+ double positive (DP) Treg cells and Venus+ Foxp3- Treg cells on the basis of intracellular Foxp3 expression. Cells of the latter subset correspond to type 1 regulatory T cells (Tr1) (refer to Non-Patent Documents 8 and 9). In this respect, the Venus+ cells (IL-10-producing cells) observed in Example 8 were investigated in terms of the expression of Foxp3. Specifically, the expression of CD4, Foxp3, and Venus in the lamina propria of the colon and the lamina propria of the small intestine of IL10venus mice kept under GF or SPF conditions was analyzed by FACS, and the numbers of Venus+ cells in the intestinal tract lamina propria were compared between SPF and GF IL10venus mice. Fig. 23 shows the obtained results (dot-plots obtained when a gate was set on CD4+ cells).

In addition, the intracellular expression of Venus and Foxp3 in CD4+ cells in various tissues of SPF Il10venus mice was analyzed by flow cytometry. Fig. 24 shows the obtained results (dot-plots obtained when a gate was set on CD4+ cells). Note that each numeric value in Fig. 24 represents the ratio of cells within the corresponding one of regions divided into four.

Moreover, in order to investigate whether or not the presence of commensal bacteria had any influence on the expression of IL-10 in regulatory cells in the gastrointestinal tracts, germ-free (GF) IL10venus mice were prepared. Then, predetermined species of bacteria were caused to be colonized in the obtained GF IL10venus mice. Three weeks after the species of bacteria were colonized, a CD4+ cell group (V+F-, Venus+ Foxp3+ cells; V+F+, Venus+ Foxp3+ cells; and V+F-, Venus+ Foxp3- cells) in which Foxp3 and/or Venus were expressed in the colon and the small intestine was analyzed by flow cytometry. Fig. 25 shows dot-plots obtained when a gate was set on colonic CD4+ cells, and Figs. 26 and 27 show the ratios in the CD4+ cell group of each mouse. Note that each numeric value in Fig. 25 represents the ratio of cells within the corresponding one of regions divided into four. Meanwhile, the error bars in Figs. 26 and 27 represent standard deviations, * indicates that “P < 0.02,” and ** indicates that “P < 0.001.”

Moreover, in order to check whether or not the presence of commensal bacteria had any influence on the expression of IL-10 in regulatory cells in the gastrointestinal tracts, antibiotics were orally given with water to five or six IL10venus mice per group for 10 weeks. The following antibiotics were used in combination. ampicillin (A; 500 mg/L Sigma) vancomycin (V; 500 mg/L NACALAI TESQUE, INC.) metronidazole (M; 1 g/L NACALAI TESQUE, INC.) neomycin (N; 1 g/L NACALAI TESQUE, INC.)

Then, CD4 and Foxp3 of lymphocytes in the lamina propria of the colon, the lamina propria of the small intestine (SI), mesenteric lymph nodes (MLN), and Peyer’s patches (PPs) were stained with antibodies, and analyzed by FACS. The results were obtained from two or more independent experiments which gave similar results. Fig. 28 shows the
obtained results (the ratio of Venus+ cells in CD4+ cells in each sample). Note that each white circle in Fig. 28 represents an individual sample, each horizontal bar represents an average value, * indicates that “P < 0.02,” and “AVMN” represents the kinds of the administered antibiotics.

[0154] As is apparent from the results shown in Figs. 23 and 24, it was shown that the small intestinal lamina propria was rich in Venus+ Foxp3- cells, namely, Tr1-like cells, and that the Venus+ Foxp3+ DP Treg cells were present at a high frequency in the colon of the SPF mice (refer to Figs. 23 and 24). In contrast, although sufficient numbers of Foxp3+ cells were observed also in other tissues, the expression of Venus was not observed in almost all of the cells (refer to Fig. 24).

[0155] In addition, as is apparent from the results shown in Figs. 23 and 25 to 28, it was shown that all regulatory T cell fractions of Venus+ Foxp3-, Venus+ Foxp3+, and Venus- Foxp3+ in the colon significantly decreased under the GF conditions (Figs. 23 and 26 to 27). Moreover, similar decrease in Venus+ cells was observed also in the SPF Il10venus mice treated with the antibiotics (refer to Fig. 28).

[0156] Moreover, as is apparent from the results shown in Figs. 25 to 27, the colonization of Clostridium spp. strongly induced all regulatory T cell fractions of Venus+ Foxp3-, Venus+ Foxp3+, and Venus- Foxp3+ in the colon, and the degrees of the induction thereof were equal to those in the SPF mice (refer to Figs. 25 and 27). In addition, it was found that the colonization of the three strains of Lactobacillus or the colonization of SFB had an extremely small influence on the number of Venus+ and/or Foxp3+ cells in the colon (refer to Figs. 25 and 27). Moreover, the colonization of 16 strains of Bacteroides spp. also induced Venus+ cells, but the influence of the colonization was specific to Venus+ Foxp3- Tr1-like cells (refer to Figs. 25 and 27). On the other hand, it was found that none of the bacterial species tested exerted any significant influence on the number of IL-10-producing cells in the small intestinal lamina propria (refer to Fig. 26).

[0157] Hence, it was shown that the genus Clostridium colonized in the colon or a physiologically active substance derived from the bacteria provided a signal for inducing the accumulation of IL-10+ regulatory T cells in the colonic lamina propria or the expression of IL-10 in T cells. Meanwhile, it was shown that the number of Venus+ cells in the small intestine was not significantly influenced by the situation where no commensal bacteria were present or commensal bacteria were decreased (refer to Figs. 23 and 26 to 28), and that IL-10+ regulatory cells (Tr1-like cells) accumulated in the small intestinal lamina propria independently of commensal bacteria.

(Example 14)

[0158] It was investigated whether or not Venus+ cells induced by the genus Clostridium had an immunosuppressive function similar to that of Venus+ cells in the colon of SPF mice. Specifically, CD4+ CD25- cells (effector T cells, Teff cells) isolated from the spleen were seeded in a flat-bottomed 96-well plate at 2 x 10^4/well, and cultured for three days together with 2 x 10^4 splenic CD11c+ cells (antigen-representing cells) subjected to 30 Gy radiation irradiation treatment, 0.5 µg/ml of an anti-CD3 antibody, and a lot of Treg cells. In addition, for the last six hours, the CD4+ CD25- cells were cultured, with [3H]-thymidine (1 µCi/well) was added thereto. Note that, Treg cells used in Example 14 were CD4+ GFP+ T cells isolated from the spleen of Foxp3GFP reporter mice, or CD4+ Venus+ T cells in the colonic lamina propria of GF Il10venus mice in which Clostridium spp. were colonized or SPF Il10venus mice. Then, proliferation of the cells was determined based on the uptake amount of [3H]-thymidine, and represented by a count per minute (cpm) value.

[0159] As is apparent from the results shown in Fig. 29, Venus+ CD4+ cells of the mice in which the genus Clostridium was colonized suppressed in vitro proliferation of CD25+ CD4+ activated T cells. The suppression activity was slightly inferior to that of GFP+ cells isolated from the Foxp3GFP reporter mice, but equal to that of Venus+ cells isolated from the SPF Il10venus mice. Accordingly, it has been shown that the genus Clostridium induces IL-10-expressing T cells having sufficient immunosuppressive activities, and thereby plays a critical role in maintaining immune homeostasis in the colon.

(Example 15)

[0160] Next, the influence, on the local immune response, of the colonization of a large number of Clostridium and the resultant proliferation of Treg cells was investigated.

<Dextran Sulfate Sodium (DSS)-Induced Colitis Model>

[0161] First, the DSS-induced colitis model was prepared as described above, and the influence, on the model mice, of the inoculation of the Clostridium and the proliferation of Treg cells was investigated. Specifically, control mice and Clostridium-inoculated mice were treated with 2% DSS, then observed and measured for six days for the body weight loss, the hardness of stool, and bleeding, and then were evaluated numerically. In addition, on day 6, the colons were collected, dissected, and analyzed histologically by HE staining. Figs. 41 to 43 show the obtained results. Note that, in Figs. 41 to 43, "SPF+Clost." or "SPF+Clost.#1 to 3" indicate the results of C57BL/6 mice inoculated with a fecal suspension.
of Clostridium-colonized mice, and grown in a conventional environment for six weeks, and "SPF" or "SPF#1 to 3" indicate the results of C57BL/6 mice (control mice) grown in a conventional environment for six weeks without being inoculated with the fecal suspension. In addition, in Fig. 41, the vertical axis "Disease score" represents the disease activity index (DAI) described above, and the horizontal axis "post 2% DSS (d)" represents the days elapsed after the initial administration of 2% DSS to the mice. Moreover, in Fig. 41, * indicates that "P < 0.02," and ** indicates that "P < 0.001." Meanwhile, Treg cells induced by regulatory dendritic cells are known to play a preventive role in a DSS-induced colitis model (see S. Manicassamy et al., Science 329, 849 (Aug 13, 2010)).

As is apparent from the results shown in Figs. 41 to 43, the symptoms of the colitis such as body weight loss and rectal bleeding were significantly suppressed in the mice having a large number of Clostridium (hereinafter also referred to as "Clostridium-abundant mice") in comparison with the control mice (see Fig. 41). All the features typical for colonic inflammation, such as shortening of the colon, edema, and hemorrhage, were observed markedly in the control mice in comparison with the Clostridium-abundant mice (see Fig. 42). Moreover, histological features such as mucosal erosion, edema, cellular infiltration, and crypt loss were less severe in the DSS-treated Clostridium-abundant mice than in the control mice (see Fig. 43).

< Oxazolone-Induced Colitis Model >

Next, the oxazolone-induced colitis model was prepared as described above, and the influence, on the model mice, of the inoculation of Clostridium and the proliferation of Treg cells was investigated. Specifically, control mice and Clostridium-inoculated mice were sensitized with oxazolone, and subsequently the inside of the rectums thereof were treated with a 1% oxazolone/50% ethanol solution. Then, the body weight loss was observed and measured. In addition, the colons were dissected, and analyzed histologically by HE staining. Figs. 44 and 45 show the obtained results. Note that, in Figs. 44 and 45, "SPF+Clost." indicates the results of C57BL/6 mice (Clostridium-abundant mice) inoculated with a fecal suspension of Clostridium-colonized mice, and grown in a conventional environment for six weeks, and "SPF" indicates the results of C57BL/6 mice (control mice) grown in a conventional environment for six weeks without being inoculated with the fecal suspension. In addition, in Fig. 44, the vertical axis "Weight (% of initial)" represents the body weight after the administration of 1% oxazolone where the body weight before the administration was taken as 100%, and the horizontal axis "post 1% oxazolone (d)" represents the days elapsed after the administration of 1% oxazolone to the mice. Meanwhile, it is known that Th2-type T cells are involved in colitis induced by oxazolone. (see M. Boirivant, I. J. Fuss, A. Chu, W. Strober, J Exp Med 188, 1929 (Nov 16, 1999)).

As is apparent from the results shown in Figs. 44 and 45, the colitis proceeded along with persistent body weight loss in the control mice. Meanwhile, the body weight loss of the Clostridium-abundant mice was reduced (see Fig. 44). In addition, it was also revealed that portions having histological diseases such as mucosal erosion, edema, cellular infiltration, and hemorrhage were reduced in the colon of the Clostridium-abundant mice (see Fig. 45).

(Example 16)

Next, the influence, on the systemic immune response (systemic IgE production), of the colonization of a large number of Clostridium and the resultant proliferation of Treg cells was investigated. Specifically, as described above, control mice and Clostridium-inoculated mice were immunized by administering alum-absorbed ovalbumin (OVA) twice at a 2-week interval. Then, sera were collected from these mice, and the OVA-specific IgE level thereof was investigated by ELISA. In addition, splenic cells were collected from the mice in each group, and IL-4 and IL-10 production by in-vitro OVA restimulation was investigated. Figs. 46 to 48 show the obtained results. Note that, in Figs. 46 to 48, "SPF+Clost." indicates the results of BALB/c SPF mice (Clostridium-abundant mice) inoculated with a fecal suspension of Clostridium-colonized mice, and grown in a conventional environment, "SPF" indicates the results of BALB/c SPF mice (control mice) grown in a conventional environment without being inoculated with the fecal suspension, and ** indicates that "P < 0.001." Meanwhile, in Fig. 46, the vertical axis "OVA-specific IgE (ng/ml)" represents the concentration of OVA-specific IgE in the sera. Moreover, in Fig. 46, the horizontal axis represents the days elapsed after the initial administration of the alum-absorbed ovalbumin to the Clostridium-abundant mice or the control mice (4-week old), and "OVA+Alum" indicates the timing of the administration of the alum-absorbed ovalbumin. In addition, in Figs. 47 and 48, "OVA" on the horizontal axis indicates the results in the case where no in-vitro OVA restimulation was performed, and *." indicates the results in the case where no in-vitro OVA restimulation was performed. Moreover, in Figs. 47 and 48, the vertical axes "IL-4 (pg/ml)" and "IL-10 (pg/ml)" show the IL-4 concentration and the IL-10 concentration in culture supernatants of splenic cells, respectively.

As is apparent from the results shown in Figs. 46 to 48, the IgE level was significantly lower in the Clostridium-abundant mice than in the control mice (see Fig. 46). Moreover, the IL-4 production by the OVA restimulation was reduced (see Fig. 47) and the IL-10 production thereby was increased (see Fig. 48) in the splenic cells of the Clostridium-abundant mice sensitized with
OVA and alum, in comparison with those of the control mice.

Accordingly, in consideration of the results shown in Example 15 in combination, it has been revealed that the induction of Treg cells by Clostridium in the colon plays an important role in local and systemic immune responses.

Next, GF Balb/c were colonized with three strains of Clostridium belonging to cluster IV (strains 22, 23 and 32 listed in Fig. 49). Three weeks later, colonic Foxp3+ Treg cells were analyzed by FACS. Fig. 50 shows the obtained results. As is apparent from the results shown in Fig. 50, gnotobiotic mice colonized with three strains of Clostridium showed an intermediate pattern of Treg induction between GF mice and mice inoculated with all 46 strains.

Next, GF Balb/c were colonized with three strains of Clostridium belonging to cluster IV (strains 22, 23 and 32 listed in Fig. 49). Three weeks later, colonic Foxp3+ Treg cells were analyzed by FACS. Fig. 50 shows the obtained results. As is apparent from the results shown in Fig. 50, gnotobiotic mice colonized with three strains of Clostridium showed an intermediate pattern of Treg induction between GF mice and mice inoculated with all 46 strains.

Next, it was investigated whether or not a spore-forming (for example, a chloroform resistant) fraction of a fecal sample obtained from humans had the effect of inducing proliferation or accumulation of regulatory T cells similar to the spore-forming fraction of the fecal sample obtained from mice.

Specifically, human stool from a healthy volunteer (Japanese, male, 29 years old) was suspended with phosphate-buffered saline (PBS), mixed with chloroform (final concentration 3%), and then incubated in a shaking water bath for 60 min. After evaporation of chloroform by bubbling with N2 gas, the aliquots containing chloroform-resistant (for example, spore-forming) fraction of human intestinal bacteria were orally inoculated into germ-free (GF) mice (IQI, 8 weeks old). The treated mice were kept in a vinyl isolator for 3 weeks. The colon was collected and opened longitudinally, washed to remove fecal content, and shaken in Hanks' balanced salt solution (HBSS) containing 5 mM EDTA for 20 min at 37°C. After removing epithelial cells and fat tissue, the colon was cut into small pieces and incubated with RPMI1640 containing 4% fetal bovine serum, 1 mg/ml collagenase D, 0.5 mg/ml dispase and 40 μg/ml DNase I (all manufactured by Roche Diagnostics) for 1 hour at 37°C in a shaking water bath. The digested tissue was washed with HBSS containing 5 mM EDTA, resuspended in 5 ml of 40% Percoll (manufactured by GE Healthcare) and overlaid on 2.5 ml of 80% Percoll in a 15-ml Falcon tube. Percoll gradient separation was performed by centrifugation at 780 g for 20 min at 25°C. The interface cells were collected and suspended in staining buffer containing PBS, 2% FBS, 2 mM EDTA and 0.09% NaN3 and stained for surface CD4 with Phycoerythrin-labeled anti-CD4 Ab (RM4-5, manufactured by BD Biosciences). Intracellular staining of Foxp3 was performed using the Alexa647-labeled anti-Foxp3 Ab (FJK-16s, manufactured by eBioscience) and Foxp3 Staining Buffer Set (manufactured by eBioscience). The percentage of Foxp3 positive cells within the CD4 positive lymphocyte population was analyzed by flow cytometry. Figs. 51 and 52 show the obtained results.

In figures, representative histograms (Fig. 51) and combined data (Fig. 52) for Foxp3 expression by CD4 positive lymphocytes from GF mice (GF) or GF mice gavaged with chloroform-treated human stool (GF+Chloro.) are shown. In addition, numbers in Fig. 51 indicate the percentages of cells in the gate. Each circle in Fig. 52 represents a separate animal, error bars indicate the SD, and ** indicates that "P < 0.001."

As is apparent from the results shown in Figs. 51 and 52, it was found that also when the spore-forming (for example, the chloroform resistant) fraction of human intestinal bacteria was colonized in GF mice, the accumulation of Foxp3+ regulatory (Treg) cells in the colonic lamina propria of the mice was induced.

Next, it was investigated what species of bacteria grew by gavaging with chloroform-treated human stool.

Specifically, using a QIAamp DNA Stool mini kit (manufactured by QIAGEN), bacterial genomic DNA was isolated from the human stool from a healthy volunteer as described above (human stool) or fecal pellets from GF mice gavaged with chloroform-treated human stool (GF+Chloro.). Quantitative PCR analysis was carried out using a LightCycler 480 (manufactured by Roche). Relative quantity was calculated by the ΔΔCt method and normalized to the amount of total bacteria, dilution, and weight of the sample. The following primer sets were used:

<table>
<thead>
<tr>
<th>Primer Set</th>
<th>Sequence (5’-3’)</th>
<th>ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total bacteria</td>
<td>5’-GGTGAATACGTTCCCGG-3’</td>
<td>SEQ ID NO: 62</td>
</tr>
<tr>
<td></td>
<td>5’-TACGGCTACCTTGTACGACTT-3’</td>
<td>SEQ ID NO: 63</td>
</tr>
<tr>
<td>Clostridium cluster XIVa (Clostridium coccoide subgroup)</td>
<td>5’-AAATGACGGTACCTGACTAA-3’</td>
<td>SEQ ID NO: 64</td>
</tr>
<tr>
<td></td>
<td>5’-CTTTTGAGTTTCATTTGGCAA-3’</td>
<td>SEQ ID NO: 65</td>
</tr>
<tr>
<td>Clostridium cluster IV (Clostridium leptum)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
Fig. 53 shows the obtained results.

As is apparent from the results shown in Fig. 53, mice gavaged with chloroform-treated human stool exhibited high amounts of spore-forming bacteria, such as Clostridium clusters XIVa and IV, and a severe decrease of non-spore-forming bacteria, such as Bacteroides, compared with the human stool before chloroform treatment.

[Industrial Applicability]

As has been described above, the present disclosure makes it possible to provide an excellent composition for inducing proliferation or accumulation of regulatory T cells (Treg cells) by utilizing bacteria belonging to the genus Clostridium or a physiologically active substance or the like derived from the bacteria. Since the composition of the present invention has immunosuppressive effects, the composition can be used as defined in the claims.

Healthy individuals can easily and routinely ingest the composition as a food or beverage, such as a health food, to improve their immune functions.

[Sequence Listing]

SEQ ID NO:1 to 20, 62 to 69

Artificially synthesized primer sequence SEQ ID NO:21 to 61

16S rRNA coding gene sequence of each Clostridium strain
Artificially synthesized primer sequence

ccttttgtag ccctgctcac tct
<210> 4
<211> 21
<212> DNA
<213> Artificial

Artificially synthesized primer sequence

gggtcacctg tatggcttca g
<210> 5
<211> 21
<212> DNA
<213> Artificial

Artificially synthesized primer sequence

tcaagtcaag atctcaagc a
<210> 6
<211> 19
<212> DNA
<213> Artificial

Artificially synthesized primer sequence

acaccggaag ccaaacaca
<210> 7
<211> 27
<212> DNA
<213> Artificial

Artificially synthesized primer sequence

gattttaata agctccaaga ccaaggt
<210> 8
<211> 27
<212> DNA

 <213> Artificial

Artificially synthesized primer sequence

ctttatgca gttgatgaag atgtcaa
<210> 9
<211> 21
<212> DNA
<213> Artificial

Artificially synthesized primer sequence

cctgctccg tagacaaaat g
<210> 10
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificially synthesized primer sequence
<400> 10
tctccacttt gccactgcaa 20
<210> 11
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificially synthesized primer sequence
<400> 11
<223> Artificially synthesized primer sequence
<400> 12
ggacattgtc tttgatggca 20
<210> 12
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificially synthesized primer sequence
<400> 13
tcttgacgt tgtgtcactg 20
<210> 13
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificially synthesized primer sequence
<400> 13
tcttgagc tcaatgttg 20
<210> 14
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificially synthesized primer sequence
<400> 14
gctgaacagc agagccttc 19
<210> 15
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificially synthesized primer sequence
<400> 15
aggtctggat cactccaagg 20
<210> 16
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificially synthesized primer sequence
<400> 16
tgcctggac cataaagaa 19
<210> 17
<211> 20
<212> DNA
5 agagatgct gactttgtg 20
<210> 18
<211> 20
<212> DNA
<213> Artificial
<220>

10 DNA
<213> Artificially synthesized primer sequence
<400> 18
atatcagcaga cctctggca 20
<210> 19
<211> 20
<212> DNA
<213> Artificial
<220>

15 DNA
<213> Artificially synthesized primer sequence
<400> 19
agagtttgat cmtggctcag 20
<210> 20
<211> 16
<212> DNA
<213> Artificial
<220>

20 DNA
<213> Artificially synthesized primer sequence
<400> 20
attaccgcgg ckgctg 16
<210> 21
<211> 1460
<212> DNA
<213> Clostridium leptum
<220>

25 rRNA
<221> (1). (1460)
<223> 16S rRNA coding gene sequence of Clostridium strain 1
<400> 11
EP 3 178 483 B1

agagtttgat cctggctcag gatgaacgct ggccggctgc ttaacacatg caagtcgaac 60
gagaaccatt ggatcgagga ttcgctaagag tgaagtgtag gaaatgtgcc gacgaggttgag 120
taacgctgta gcaatctgcc tttggaatggga aataacgacc tggaaacacgc gcctaatacc 180
gcatgataca gctgggaggcc atctccccctg gctgcaagaa tttatcgc tcgagatgagc 240
tcgcgtcttgat ttatcgtagtt ggccccgctaa gcgccacca agggagccag cagtagcgg 300
actgagaggt tgtgccggcaca cattgggact gagacacggcc ccagacctct aacggaggcaa 360
gcagtgggga atattgggca atgggaccgaca gctgccaccc aacacgcggcc gtgaaggaag 420
aagtttttcgggttgaacct tttctttgtc gcggagcag acaagtgccag tacttgacac 480
gcgtactacgc tgtagccgacgt cgtatacgt tggcagcagc tatactggat taccctggttt 540
aagggggttgc agcgcgactcgt cagcticaagtc gataacacggc gctacacttcg tgtggtcacag 600
gaactgtactct cgctaggacct gcgggagcagc ggaattctag gtagcgggtga atgcggtagat 660
ataggaggg accctgctgac ggtcgctgccg tggagactcg gcgcgaccgc ccggagcaagt 720
ggggcggcc aacagtcgactgt ccaacccga cttgacccg tgggtttaa 800
tgggaaaatt caccaagcag cagtcgcaagc gccgcagc tgggagactcg gcgcgcagc tgggttttg 840
agtacagatcg caagtcggtaa actcaagaga atggacgggg cccgcacacag cggtagagta 900
tggtggtttaa ttcgagaacga cggagaggag cttaccaggg cttgcactcc gcgggacccg 960
actagagata gttcttttcttc ttcgccagacc tcggggtcag gttgtgcagct gttggtcgatca 1020
gttcaggtcgg ccctacttgga atttacagc ccgaacgcagc gcaacccctta ttgtagatgg 1080
tcaagcggag gcacactcagc gagactgcgg tggacaaaaac ggagggaggt ggggcagaca 1140
tcaaatcactc atgcccctta ttcgtctgggc cccaaacgta tcaaataggt ggttcacag 1200
gggagagcaat accgagaggt gggagaaaccc cttaaagcccc atcccagttcc ggaagcggg 1260
tgcaccccctg aattggtgct gttcgaagagc cttgacttcg cttggttagc ccgggagctgc 1320
ctagctcgtgc acaacccgaccc tgggctcctgc agcagcagcc cgggaggcagc cccgagcgagc 1380
agtactgtagc ctaacccgcag ggggggggcgc ggccccagagt ggttcgagc attgggggtga 1440
agtactgtagc agttagcggg 1460

<210> 22
<211> 1485
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1)..(1485)
<223> 16S rRNA coding gene sequence of Clostridium strain 2
<400> 22
agagtttgat cctggctcag gatgaaacgt ggccggcgtgc ttacacatcg caagtctgac

ggacacccc tgaaggaatt tcgggaaac ggaaagggact gcttagtggc ggacgggtga

gtaacgcttg aggaacctgct ctgggagtgg ggaataaacag ctggaaaccag ctgctaatac
cgcataatat atctgggccc catggtctctg gatacaaaag atttatcgtg ctgagatcca
cgtggtctctg attagctagt tgtgccggtta acggccccacc aaggcgacgc tcagtagcgc

gactgagagg ttgcccggcc accttgggac tggacacccg ccacagactcc tacggggaggc

gcgagtgggg aatattgggc aattggccga aagtctgaccg aagcaacgcg cgtgaaggaa
gaagcttttc gggttgtaaa ctttctttttg caggagccaa gcaagtagcgc gtacctgagc

ccgattttc tgggctttaa gggcgtgtag gggggagctgc aagtcagatg tgaaaaccac

gggctcacc tgtgggcccc tcatctgaaac ttgtagttcctt gattctggga gaggacagcg

gattctagt tgtagccgatg aatgcgctaga tatagaagaa cacagctgagc gaggcgggtct

gcaactgcac cttgagcggga aagcgtgggg aagccagccgg attagatcacc ctggtgatgc

acgtgtaaa cgctggtatg caagttgtgg gggagcactgc cccctcctgtg ccgcagttaa

cacaataagtt atcccacctgg ggggtgctcg tgcgaaggctt gaaactcaca aagatatggac

gggggccgac acaagcgggtg gagtatgttg tttaatacctg aagcaacgcg aagaactcta

cagggctctg acatcccccgt gaccgtcttcg gagataggat ttgcccttcgg gggacactgg

agacaggtgg tgcaggtttgc ctgtcagcgc ctgtctgtag atgtggggtg aagttccgca

acgagccaaa cccctatttg gtagttgctcg gcaaagccac tctagctgag cttgccgttgtga

caaaaacggag gaaggtgggg aagacgtcaca atacatcatgc ccctctatgtc ctggccacac

caggtactac aatggtggtcc aacagagggga agccaagcccg cagagttggag caaatcccta

aaagccatcc cagtcggcag cacccggcctg cgttagtggc gatcggctag
	taatgcggag tccaaggtgc gctgccgaata cgttccccggg cctttgatatc accgccccgtc

cacccatggg aagttgggacc accgcagatgc cgtagcctaa ccgcagaggg ggcgccccgc

aggtggttt cgaataattg gggtgagttcg taacaggtta gcgggtc

<210> 23
<211> 1491
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1). (1491)
<223> 16S rRNA coding gene sequence of Clostridium strain 3
<400> 13
agatctgctg gagaagagct ggcggcgcgtgc ttaacacatg caagtcgaac 60
ggacacatc cggaaagagag ttgtgtcaat gagaagagat gcttagttgag ggacggtggag 120
gtaacggtgta aggaaagcttc ttttcatcttg gggcaaaagag tggtaataac tggtaataac 180
cgcataacgt agggtgtactcg catggttatcgt gtaccaagaa tttagcggtgt agagatgccc 240
tcggtgctgtg ttagtcatcg ggtaggtaa cggccttcac ggccgacgag catagcgcgag 300
actgtgaggttg ggcgggctcag cattgctggt cagatacgcc cagactctct acggagggcag 360
gcagtggagct agtggggctc atggcccagaa gcctgacacc gcacgccccg tggagaagagag 420
aagcctttcg gtgtgttaac tgttttttcag ggggaagagc agaagacaggt accttgtcagaa 480
taagccacgag ctaactgcat gcacgacgcgc ggtgtaatac gttagggcgca agctttggtccc 540
ggatactcttg gttggttgag gggttgag cggcggcagaa 560
ttctagtgtg aggctggtaag tgcgttgagata ttagggggaa caccagttccc ggaagggctc 720
gctggagcgac aactgacggt gaggccgcagag agctggggtcag gcaacacagagg ctagatatcct 780
tggtgacgctc cggctgtaacat gcagttcactgt tggcttggtgg gagctgacgcatctgt 840
cagctgacagc ataattacag ccacctggtgg caggctgtgg ccagttcgaga actcaagaggttr 900
attgacgggt gcggcgcacaa ggggtgtgttt aaattctgatga acgctgagagaa 960
ctctagccgg cctgtgacatc atctaaagcag ctagtgacatc catggtttgct gtcagttgctg 1020
aagtagagac atggtagtgcag tggctgctgtg ccagctgtgggt cagtgaagatgt tgggttaagt 1080
cccgcaaccg gcgctacccct tattggttatt gcctacgcaag gagaacctctga gcgctgacgcatctgt 1140
cttgacaaa aagggagagga gtagctggagat ccgtagctaatc tatgtgctgcttgcagag 1200
gctacacagc taataataatg ccaggtcagaa gaggagatgac aacccgccgcc ggacgagagaa 1260
cccttaaaag ccttgacattg gtcattgcagc gctgcaaccg cgactgtgctgc tggtagcgaat 1320
cgtctgtagaat cggctgtagat ccagtgcgctgc tttctctgtgc cggcggcctt gtcgcaacag 1380
ccgcgtcagc agcccagagc gcggactcgga gcctcaacgca aaggagggagct 1440
cggcagagag cgggtttcagat aatgtggggtg aatgtgcaagc aaggttagcag ctttgctgtg 1491
DNA

Clostridium leptum

rRNA

16S rRNA coding gene sequence of Clostridium strain 5

AGAGTTTGAT CCGGCTCAC GATGAACGTC GCGCGGGTGC CTAACACATG CAAGTGAAAC
GGGTGTACGG GGAGGACGGA TCAGGGCAAA AACCTGTCGAC ATGAGTGCGC GACGGGTGAG
TAACGCTGTT GGCAACCTGGG CTGTAAGGGG GAATAACTTAGG TGCTAATACC
GCATAACGGG GGAAGCCGGA TGGGTTCCTCC CGAAACAATCG GGATGGCGGC
GCGTCTGGAT ACGCACTGGA ACGGTAAAGG CCGCAGTACA GTAGGGCGGC
TGAGAGGGCG GACGGCCACA CTGGGAAGTG GACACCGGCC AAGACTCTAC GGGAGGCAGC
AGTGGGGGAT ATGCAACAAG TTGGGGAACG CTCGATCGAC CGACGGCGC CTGGTAAGA
AGTATTTCGG TATGTAAGGC TCTATCAGCA GGGAGGAAA TGAAGGTTACC TGCAAAGA
GCCGCCGCTA AACTGTCGAC AGCGACCCGC GTATACGTA GGGGCAAGC GTTATCCGGA
TTTACTGGGT GTAAGGAGG CAGTGACGCC AGCGCAAGTC TGAGTAAGAT CCCATGGCTT
AACCATGGAA CTGCTCTTGA AAACGTGCAG CTGGAATGCA GGAGTAAGC CGGAAATCTT
AGTGTACGT GAATTAGCTA GATTATAGGA GGAACACCAG TTGGCAAGGC GGTGAATGTA
ACTGTAAGC AGTGTAGGGG TCAGAAGGCT GGGGAGCAA CAGGATAGA TACCTGTGTA
GTCCACCGGC TAAACGATGA TTACTAGGGT TGGGGGGAAC AAGGTCTTCTCG TGCCGGCCGC
AAACGCTATGA AGTAATCCAC TGCGGGAGTA CGTTGCGAAC AATGAACACT AAAGGAATTG
ACGGGGAAC GCACAAAGGG TGAGCATGAT GGTATAATTC GAAGCAACGC GAAGAAACTT
ACCTGGTCTT GACATCCCGA TGACAGTGAA CCAAAGTCAC TTTCCCTTCG GGGCATTGGA
GACAGGGGT GCTATTGGGT CGTCACTCG TGCTGTGAGA TTGGGTGTTA AGTGCCCGAA
CGAGCGCAAC CCCCATTCCC AGTAGCCAGC AGTGAAGCT GGGCACTCTG GAGAGACTGC
CGGCGATAAC CGGGAGGAGC GGCGGATGA CGCTCAGATCA TAGGCCCTT CATGATACAG
GCTACACACG TGCTCAATAG GCAGTAACAG AGGGAAGCGA GACGGTGAGC TTGAAGCAAT
CCCAAAATA AGTCACCCTG TGAGATTGTA GTCTCAACTG CAGACTACAT AAGCTGGAAT
CGCTAGTAAT CGCAATCTAC AATGTCGCAG TGATAACGTT CCCGGTTCTGC TACACAACGG
CCGTCACCAC CATGGGGAGC GGAAATGCCG GAAGTCAGT GACAAACCGA AAGGAAGGAG
CCTGCGGAGGG TGAGGCGCGT AACTGGGTTT AAGTCGTAAC AAGGTACGCC T
agagtggat cctggctcag gacgaacgct ggccgcaacgc ctaacacatg caagtcgaac 60

ggagtgagaq tgtctgcactc tgaacttaqgt gtcggagcgg tgtgaactacc gttggcaacc 120
tgccttcctc agggggatta cgtttggaa aagaacgctaa tacccgataaa aatatacggag 180
tcgcaadggcaagtcatataa cagagacactc cgcctgaaag tgcgctgcgc tgcgatgatg 240
cagttgggcc ggtatccggc ccaaccaagcg aacaatcgtta gcggacgtaa gagggtgaac 300
ggccacacttg ggcctgagac gggcccaacgc ctccttacgga aggcgacgat gggggtattt 360
gcacaatggg ggaaccctctg atgcagcogt gcggccgtgaa tgacacagcc ctcccgggttg 420
taaagttcttg tcggcagggga gcacaaatgc ggtacctgc gcagacactc cggctaacta 480
cgtgccagcagc gcaagctgcaga tcaagtggga gaagaacgctg ctcggaatatta ctgctgtgat 540
agggacgcta ggcgggaggg taatgttaat gttgaatctta tgcggctaacc ccgtagcctg 600
gttcacaatct ggctctctctg tgcagatgta gccaggcgga attccctagtg tagcgtctgaa 660
atgcgttagt ataggaggg caacagttggc gaaaccgggc tcgctggcttt tgcagcgtct 720
gaggcttgtaa agcgttgggaa tcaacacaagc ttagatccgc tgtgatgctca cgccgtaaac 780
gatgattact aggtgtgggt gcggcgcacc ctccgctgccc gggatctaaca aataaagtaa 840
tccacctggg gagtaaggcgc ccaatggtaa aacttcaagg aatgggaggg gcggcgcaca 900
agcagtggag tatgtggtttt aatictcggacgc aacgcgaaga accttaccag gttcttgacat 960
cgagtgaacgg acatatagatg atgtctttccc ttcgggacac gaagacaggt ggtgcagcgtg 1020
tgtcgctcagc tctgtctcgtg agatgctcgg ttaatcctcc caacagccgc aaccctttacc 1080
attagttgctc acgcaagagct accttaatgg gcgtgtcgttt gcacaaacgg aggggggtgg 1140
ggatgacgtc aaatcatcat gcgccttcattg aacctggccga caaacagctac aataagggcg 1200
tcaaccaaggg gagccagccc gcggacgagc gcaacaccccc taaaagccgt ctcagttcgg 1260
attgcacgct gcacactccc tgcggaatgt gcgaattcgct agtaatcgcc gacgacttag 1320
ccgggtgaaa tcaacctcgg gcgcctgtac aacccgcggc tcacacactg agagcgggtta 1380
acacccgaag tcaatagtct aacggccactg aggacactgc ggaagggtggg atgggttaatt 1440
ggggtgaagtc gtaacaaaggg tagccgct 1467

<210> 26
<211> 1474
<212> DNA
<213> Clostridium coccoides
<220>
<221> rRNA
<222> (1..(1474)
<223> 16S rRNA coding gene sequence of Clostridium strain 6
<400> 26
<210> 27
<211> 1484
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1)..(1484)
<223> 16S rRNA coding gene sequence of Clostridium strain 7
<400> 27
DNA of *Clostridium* strain 8

16S rRNA coding gene sequence

```
agagtttgat cctggtcctg gatgaaacgct ggccggtcctg ttaaacacetg caagtgcgaac 60
gagaatccag tgaaggagtt ttccggaacaac ggcatcggtg gagagtggcg gacggttgag 120
taagcggtga gcaatctggc ttagagttgg gataaaagct tgggaacagc gcgtaataac 180
gcatgatgcg tctgggaggg atctctctctgc acgcacaaaga tttatacgtc ttagagatgc 240
tcgtgtgctg ttagctgtttgg gcggggttaa agggcctaccg aggcagcatgtcag 300
```

```
actgagaggt tggccgctcga catttggagct gagacacgagc ccagactcct acgggagcc 360
gcagtgccga atattggcgtca atgggctgca cgcgtgaatta cgtagttgga aagccgttac 540
cgattttatt gggtgttaaggg gcgtgttggg gcgggaaagca agtccagatgt gaaaacctag 600
ggctcaaccc tgacgctgca tttgaaactg tttttcttttg gttgtctggaga gcgcaactgga 660
attccggtgtg tagcggctgaa atacgtcagat atacggagga caacagtgcc gacggtgattg 720
cggacagta ctgaacgtcag agcgcggagaa cgttgagagga aaacagatagta tacctgtgtag 780
tccgcgtaaa acagagttgaa atagctcagta tggcagctgg ggggtcggac cccctccgct gcgcagctaa 840
cgcaataaatg atccccacttag gggtgctagca tgcgaaggttt gaaactcataa ggaattgagc 900
ggggcccgcca caagcggtagg atagttgttag ttaattcagaa gcaacgcgaag caaacttaacc 960
agggcctgac atctccctcag aacaccaagga atggatttagg tggccottgg gggaaagcaga 1020
gacaggtggt gcagttgtttgc gctcagctcag tgcgtatgagga tgtggtgattgtag gttcaccgca 1080
cgagcgcacact cctatttgaggttagtctcag ctagacagact ctacggcagac tcgcgtgtgac 1140
aaaacgagagg aaggtgccccga gcagctcaaa tctctcatgc cctttcatgccc cttgacccaccac 1200
acgtactaca atgggcggccaa acaaaagagag ccaagacccgc gaggtggagag aatctcataa 1260
aacgcggctcc agtggcgatcg gcagccgtcaca cccgacctg tcggaggtgg gattcgtaag 1320
aatacgctccg cagcattcgcc ggggtagatac gccctggggtt accggcctaca cccaagccccg 1380
caccatgaga gtcggggcag ctccggttggct gtagccttaac cgcaaggggg gcgggctgg 1440
agggtgggtc gataatgggg gtgaagtctgt aacaaggtgc ccgt 1484
```

<210> 28
<211> 1483
<212> DNA
<213> *Clostridium leptum*
<220>
<221> rRNA
<222> (1). (1483)
<223> 16S rRNA coding gene sequence of *Clostridium* strain 8
<400> 28
DNA coding sequence of Clostridium strain 9
<210> 30
<211> 1489
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1) (1489)
<223> 16S rRNA coding gene sequence of Clostridium strain 10
<400> 30
EP 3 178 483 B1

agagtcttctag cctggtcctag gatgaaagt cggcgccggtgc ttaacacatg caagtccgagc 60
gaaccttcttttagaactc ttcggagggga agagaggttg acttagcggg gcacccgggtga 120
gtaacgcgtg ggcaccctctgc tttacacagc ggggtaacaa ttgaaataga ttcgtaatagc 180
cgcataagac caccgtctagc cattggtagt ggtggggttag aagccctacca agcgcagcgat cagtgaggca 240
cctgagggag cggcgcggcga cattgggact gacacagcgc ccaaaactcct acggggagga 300
gcagtggtgga atattgcaca atggggggaa cccctgatgca gcggccgccc gttcgtgagg 360
aagtatttgc gtagttaag actctatcagc atgggagagaa atgacggtac ctgactaaga 420
agcctccccgc ctaactcgcc cagcagccgg cggtaatacg tagggggcaag gctttatcgg 480
gattactgg gttgtaaggg agcgttagaccc gactttgcaag tctgatgtaa aataccgggg 540
cccaaccggc gactgcatttg aaactgtatt tttggaggg gttcggaggag gcacagtgga 600
tcctgggttag cgggttaaatgc ggtgtagatt tcagggagaa caccagtgcc gcgaagggaa 720
tactggagacg ataactgacg tggaggcgcgg aacggctggga gcaaaacaga attagatacc 780
cggttagtcgc gctgttaacgc atgtagatcata ggtgtgcccgg gactggccccc tcggtaggggg 840
agtttaacaca ataagtactgc cactggaagg tagatcgagc agggtagaaac tcaagaggaat 900
tgaccggggc ccggcacaagc gttggattat gtgctttatg tcgaaggcaac gcggagaacc 960
tttcaggccc ttgacatcct gctaagcaag tagagataca ttggtgccc ttgggggaa 1020
gcagagagacg gttggtcagtg tttggtcgtca gctcgtgtcgc tggatgtttg gtttaagctc 1080
cggcaagagc gcggccctta ttgtagtttg ctaagccaga gcactctagc gagaagclgcg 1140
ttgcaacacac ggagaagggc ggggagacgc tcccaatctac atggccctta tctgtctgggc 1200
tacacagcag atacaatggc ggttaacaaaa ggggtcgcaaa gcggcagggc agaagccacc 1260
caaaaaccgc gtccagtctg ggtacgcgagg cgtgaaaccgc cctgcgtgaa gtcggatagtg 1320
cctaatcgc cggatcagca tgcgcgggtgg aatacgttcc cgggccttgg atacaagcgc 1380
cggtcacaca tgagtaatgg cgacacccagc agttgagtgc ctaaccgcag ggaggcgccc 1440
gccgaaggttg gttgtgataa tttgggtgaa gtcgtaacaa gttacgcccgt 1489

<210> 31
<211> 1490
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1)..(1490)
<223> 16S rRNA coding gene sequence of Clostridium strain 11
<400> 31
agagtttgat cctggctcag gatgaacgct ggcggcgtgc ttaaacatag caagtccgaa 60
agaatccag tgaaggagt ttcggcaaca ggatctggag gaaagtggcg gacggttgag 120
taacgcgtga gcaatctgcc ttggagttgg gaataacggt tggaaaacgc cgctaatacc 180
gcatgatgcg tcctggaggg atctctcttg agcgcacaaga ttatctgctc tgagatgagc 240
tcgctgtcga ttactgttgttt gcgggggttaa aggcddacca aggccagcgt cagtagccgg 300
actgagaggt ttgcccggcga cattgggact gacaacgcgg ccagactcct acggggagca 360
gcagtgggga atattgggca atgggccaag gcctgacccca gcaacggcgcgtgaaggaag 420
aaggcttttcg ggttgtaaacc ttctttttctg ggggaacgaag aagtgacgg taactcagg 480
ataaggccagc gctaactcag tcggcagcag cgccgttaata cgtaggtggc aagcgttatc 540
cggattttatt gggtgtaaag ggccgtgtagc ggagaagaagc agtcagatgt gaaactcag 600
ggctccaccc tgtgcttgtca ttgtaaactgt ttttctttctgt gtcttgaggg ggcaatcgg 660
attcgcgtgtt gtaggctgtga aatgcgtgata ttataacgga ggaaccacca gtggccggag 720
gcggatgctg ggaacagtaa tctagctgta ggcggcggaa gcgggtggag caaaccagat 780
agatacccttg gtagtcacag ccgtaaacga tggttaactaa tgttgagggga cttacccttt 840
cgtgcacagc taagaataaa gtttcctaac ccgggtgtac gcatgcaggtg gaaactcaaa 900
ggaatggagc gggtggccggc caagcggttg gagttggggt taattgggac aacggaaga 960
accttaccag gcggttgact tgtgtaacgc accagaagag gcggtaggtg cttcggggga 1020
aagcagagac aggctgtgtcag gtttggctgt cagctctgtg tgtgagatgt ggttgaatgc 1080
cgcgaacgag cgcaaccctt attggtagtt gctagcaag agcacctctag cgagactgcc 1140
gttgacaaaga cggagagggg tgggacgcag gcataactcg cttaccctttc acgtcctgg 1200
ccacacacgt actacaatgg gggcacaaga agagagggca gaccggcgag tgggaaat 1260
cctaaaaacgc ctccggcgtt gcggatccag gtcgcaaccc gcctgtctgtag aatggaaatc 1320
gctataatc gcgcacgctg atgcggctgtc atatacgttc cgggcctttg tacacccgct 1380
ccgtcaaccag atggagtcg gcggaccccag aagtcgctag cttacgccca aggggggagc 1440
gccggaaggt gcgttccgata atgggggttgca agtcgtaaca aggtacccgt 1490

<210> 32
<211> 1489
<212> DNA
<213> Clostridium coccoides
<220>
<221> rRNA
<222> (1). (1489)
<223> 16S rRNA coding gene sequence of Clostridium strain 12
<400> 32
<210> 33
<211> 1456
<212> DNA
<213> Clostridium coccoides
<220>
<221> rRNA
<222> (1). (1456)
<223> 16S rRNA coding gene sequence of Clostridium strain 13
<400> 33
<210> 34
<211> 1475
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1)..<(.1475)
<223> 16S rRNA coding gene sequence of Clostridium strain 14
<400> 34
The 16S rRNA coding gene sequence of Clostridium strain 15 is shown below:

```
agtatttgat cctggtctag gccgaagaagc ggccggctgc ttaacacatg caagtccgag tgaattc 60
ggacgacccc tgtagaggttt ttccggaacac ggaagaagctaatc gtattgtggc ggacttggta 120
gtaacgcctag aggaacctgc tccccagaggg gggaacagcag tgggaacagc acgctaatct 180
cgcattgatg cttgggagcc catgactgcc acgtaaaaga tttatatcgtg gaagatatgcc 240
ttcggtctgta ttatgcgtagt tggagggatta cggcccaccac aaggccagcat cagttgctgg 300
actgagaggt tggcccgccca cattggaact gagaacagc agcagctcct acggggagca 360
gcagtgggga atatggggca atggactgca gttggtaccca gcaaggcccc ggtaagggag 420
aaggttttgc gtgtttacac ttcttttaag ggggaagagc agaagacgtt acccccttga 480
taagccaggc ctaactacgtg gccagcagcc gctgtataac tggagtccga acgttttga 540
ggatttaactg ggtgtaaggg ccgtggcgac ccggagacac gcgtcgatgtgc ataactcaggg 600
gctcaacccct gtcgtaactgt ttcctttgag tgcctgggag gtaatccgga 660
ttctctttgtg tagccgtgaa tgcgtagata taagagagca cacagtggcc agcggattac 720
tggacgatac tgacggtac gcgaaacgcgt gggggagca cagaaatttag atacgtgatgt 780
gcagctgtaa cgatgctatact gttcgtcggcactgtgcttgag ttacacaata 840
agttcgcgac ctcggaggtac gatcgcagga ttggacttca aaggaattga cggggccgcc 900
acaagcgttg gattatgtgt ttaatccgag cgcagaatcag agaaccctc cagggctttta 960
caatgcgtaa actgagttga gtaacattgac tggccctccg gggaaagttc agacaggttg 1020
tgcatgggtg tccgctgcgtc gtttcggtgag atgttsggggtt aagtcgagcca acgagcgca 1080
ccccctattgt tagttgctata cgaagagcag ttcagcgacag ctgccggttga caaaaacggag 1140
gaagggcgagg cgcagctcga atcatcatgc ccctttttgtgctattgcta cactgtaatta 1200
aatgggcttt ttaaaaggggt tggaagagcc cgagggcagag cggagccgca aagccctgc 1260
cggggggtcag ccggcgtcag cagccgctgg cctgttgagc acgctgcgtc acaccatgag 1320
tgagcggagc cggctgaata cgttccccggc cttttatgac acggcgcctgc acaccatgag 1380
agtccgggaac acccgaagctc ctgtggctaa cggcaaggag ggcggccggc caggtggttt 1440
cgataattgg ggtgaagtcg taacaaggta gcggt 1475
```
<210> DNA
<211> 1486
<212> DNA
<213> Clostridium papyrosolvens
<220>
<221> 16S rRNA
<222> (1),(1.486)
<223> 16S rRNA coding gene sequence of Clostridium strain 16
<400> 36
<210> 37
<211> 1493
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1)..<1493)
<223> 16S rRNA coding gene sequence of Clostridium strain 17
<400> 37

```
agagttagt cctcgctcag gataaaacgt ggcggggcac ataaagacatg caagtcgaac 60
ggacttaacct cattcttttta gattgagacg ggtaagtgcgg ggaactgatgga gtaacagtta 120
agcactgctgc ctatccagag ggataaaacg ttgagaatca tcgtatatca cagcatatcet 180
cacagtataca cattgataca tcggggaagg agcaatccgcc tcgtgatagg gctttgcccct 240
gattagtttag ttggtctgggt aacgccttac caagacagcg atcagtaagc ggactgtagag 300
gtgaaacgcgc cacatcggga tgtagatacg gccccagaccc tcatcgggagg cagcagtcgg 360
gaatattgcgc caatggagga aacctcgacgc cagtgacggcc gcgtatagga aagaggttt 420
cggtttgtaa actattctgc ttaggaaga taaaagaactg tacctaaagga ggaagcccgg 480
gctactatgc tgccaggacgc cgctgtagata ctaaggggc cagcgttatac csgaattattt 540
ggggtgtaag ggtgcttaga cgagaagaaca agttggttgtg gaataccctc gcgtcaacttg 600
aggaacgctca accaacaacttc ttctctttgc tgtggcggaga ggaagtgga attctctagtg 660
tagcgggtgaa atgcgttagat attaggagga acacccagttg cgaagccgcac ttctctggagc 720
ataactgacg tgtcagccag aaagtggtgg gaggcaacag gattagataac cctggtatgc 780
ccacactgttaa acgatgggata ctaggtgtag ggtgtattaa gcactttcttg ccgcgcgctaa 840
cgcattaagtt atcccaccctg gggagtacga ccgcaaggtt gaaactcaaa ggaattgagc 900
gggcccgccga caagcagctgg agtatgtgtg ttaattaagaga gcaacgcgaa gaacctttacc 960
agggcttgac atatacccgga atatactaga gtagttatat tccccgagga ctgtataca 1020
ggtggtctcat gggtgctgtc gatctgtgct gcgtgatggt gtttaaagtc ccgcaacgag 1080
cgcacaccctt atcgtttagtt gctagcaggt aatgtcgaga actctagcga gactgcgggt 1140
gataaatcgg aggaaaggtgg ggtagacgtc aacatcatcat gcctttttatg ctctgtggca 1200
ccacagctact cacaagcgcgg taacaggagg aacgaatata tgtatagttg gcaaaacct 1260
aaaaacgcgc tccagtttcgg tgtaaggcgtg aatattctgt tcatgaagcc ggaattgcta 1320
gtaatggcag gtcgagcata tcgctgataa aacttccccga gctttgtaca caccgcgcgt 1380
```

cacaccatgag gagttaggaaac tccggcaagac ctgtgagctata cactgtaaaga ggcagcagtc 1440

gaagttgag ccaatgattttag ggtgaagaac gtaacaggt agcgcgt 1486
```
<210> 38
<211> 1493
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1). (1493)
<223> 16S rRNA coding gene sequence of Clostridium strain 18
<400> 38
<210> 39
<211> 1483
<212> DNA
<213> Clostridium leptum
<220>
<221> misc_feature
<222> (1)..(1483)
<223> 16S rRNA coding gene sequence of Clostridium strain 19
<400> 39
<210> 40
<211> 1511
<212> DNA
<213> Clostridium coccoides
<220>
<221> rRNA
<222> (1)..(1511)
<223> 16S rRNA coding gene sequence of Clostridium strain 20
<400> 40
agagtttgat cctggctcag gatgaacgtc gcggcgcgtgc ttaacacagt caagtccagc 60

gggctcatat tgaacactag tgatgtatga ttgaaggtcg gacgggttag taacgcgtagg 120

agaacctgcc gtagccctgg gcgatgactt tagaatagtt tgctaatacc gcataacgcgc 180

agacgcttgcg atgaaaccag gtggaaataaat cccggtgtatat aagatgggtac cggcgtcctat 240

tagctggttg tcggggttaac gcacccaccaa ggcagcacagc agtgaccggc ctcagaggtt 300

gacggcgcac attgggactg agacagcggcc caaactctcta cggagggcgag cagtgggaa 360

tattgcacaa tggggaacac cctgtatcgcg cgacgcggcgc cggagtcgga agtatattcgg 420

tatgtaaagc tcatcagca gcggagaaat actgaccccta cggctagcgcg aaggtttaccg 480

actaagaagc ccggcgtcaac tagctgctgcc cagccccgggt aatagccagtt ggcacagctt 540

atccgggatt actggttcga aaggggagctg agacggcgcgc gcagaattcgtga tgaataacctc 600

atggttaaac actggaacttg tttgggaacac tgtgcagcagtg agttgcaagag gaggtaaacg 660

ggaattcctga gctggagggg ttgaatctgag ataatagga gcacacaccag tggcgggaagg 720

cggctacggt gacggtgagtt ctgcaagacgc tgggggacaa acaggtattag 780

ataccctggt aatccagcgc taaacagtagt tgtactgattg ttgggggtaatg ataggtcttc 840

ggtgcccggcg caaaggcaaat taagtaaattc aactggggggag tgcagtttgcg aagaatgaaa 900

tccaaggaat tgacgagggc cccgcacaaa gcgggtggagtc atggtgttta attccaagacgc 960

aaacgcaagg aacattacc cgaggctgtgg atccccgatga cgaatgagca aagtcacttt 1020

ccctctgggg caattggaga caggggtgtgc atgggtttgct gtcagctcgtg tccgtgagat 1080

gtggcgctaa gtcggcgcagagc gacggccaccctattctgat gtagccgcaatggtaagagctg 1140

gcactctgag agagactccc gcgggatacc gcggggaagg gcggggttagc gtcgttacatc 1200

catgccccttt atggatccag gtacacagtgt gctacaatgg ctagtaacaac gcggagccagc 1260

acggtacgcgta taagccaatct cccaaatataag cgctccgattt cggattttag tccgcaactc 1320

gattacagag agctgtgacttc gctagttacc gcggattcgcg aagtttgctg aatcgtctgc 1380

ccgggtcttg tacacacgcg cgcggcagac gtaggttgcag gcggggtccag aagttcagaga 1440

cttaaccgaa agaaggagcg tcgccgaaagg ggcgccccggtagtgggtaga agtagataacc 1500

aaggtagcccc t 1511
<210> 42
<211> 1491
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1)..(1491)
<223> 16S rRNA coding gene sequence of Clostridium strain 22
<400> 42
EP 3 178 483 B1

agagtttgat cctggctcag gatgaacgct gcgcggctgc ttaacacagt caagtcgaac
60
ggaatccag tgaagaggttt tccggaacag ggapatgagg gaaagtggcg gacgaggtgag
120
taacgcgtgta gcacatcgc cttggagtgga gaataacggt tggaaacagc ggctaatacc
180
gcatcgatcc ctctggaggg atctctctgtt acgcaccaaga ttatcgc gtcagatgc
240
tcgcttcgtga ttactctcgtt gcgcggccag aaggcactac ccgggacctg ccaggtccgg
300
actgagaggt tggccggcaca cattggagcct gagaacacgc ccagaactctc agcggagaca
360
gcagtgccgga atatggggca atggggccag cggcggcagc ccaggtggag gtgaagcgag
420
aaggtcttcg gtttggtaaa cttctctcttg agggacaag aagatgacgg tacctcgaga
480
ataagccacgc gctaacactc cgccagccag ccgagcttaa ctgatgtgagc aagcgttattc
540
cggatttatt gggtgtgaag ggcggtgtggc ccgggaagaga agtcgatagt gaaactcag
600
ggctcaaccc tggacgctgca ttggaactct ttcttcggta cttgctggag cggcaatcgg
660
attcctggtgc tagccgggaata tgcgttagat ataaggagcg caccagtgcc gagaacgctgc
720
gctggacagtc aactgaagctt ggcggcgcagc cgggtgcgcag ccaacaggat tagatacctt
780
ggtagtccac gcgcggctacc gcgggtacgt ggtggtggcc gcgtggcctaac ctccgtgcgc
840
cagctcttgaag tattacgatct caacactggcct gactgaccc ctccgtgcgg
900
attgacacgg gcgcgcacca gcgggtcgcagc atgtgttcta attcgcaagag acgcgaagaa
960
ccttaccagg gcttgacatc ctgcttaacc gcagcagag tattcgtgac ccctggggca
1020
aagcagagac aggtgtgtgcga tgggttgctgt cagctgctgtt cttggtatat cttggttgga
1080
cctggaacgc ccggcacaccc ccgctttcgtcg caagcttctc gacggagtcac
1140
cgttgacaca acgggaggg gctggccgcag cgtcaatcata tcatcttccct tcactctctg
1200
ccgcacacagc tctacatag gccggcacaac aagagaggg aagacccagc aggtggagccc
1260
tccaaaag cggcctcgag gcgctgaccag cggctgcacc ccgcctggctg aagttggacat
1320
cgctcagttcc cggcgcccgct cttgattaccgg gtcatacgctt cccgggcctt gtcacacccg
1380
ccgctcagcct catcgagact gggacacacc cgaagtccgta gcctacacgc aagggggcgc
1440
cggcgcggag gctgggtgcag cattggtggg gatgtggcga acgcagcgac
1491

53

<210> 43
<211> 1495
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1). (1495)
<223> 16S rRNA coding gene sequence of Clostridium strain 23
<400> 43
<210> 44
<211> 1440
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1)..(1440)
<223> 16S rRNA coding gene sequence of Clostridium strain 24
<400> 44
<210> 45
<211> 1495
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1) .. (1495)
<223> 16S rRNA coding gene sequence of Clostridium strain 25
<400> 45
DNA sequence of Clostridium strain 26:

agagtttgat cctggctcag gatgaacgct ggcggcgtgc ttaacacatg caagtgcgaac 60
gagaaccatt ggtacgagga ttgctcaaag tgaagttggg gaaatggcgc gacgggtgag 120
taacgctgta gcaatctgcc ttggagttgg gataaatgac tgtgaaacgc cgctaatacc 180
gcatgataca gcttggagac atctcctctgg cttgtaaaga tttatcgcct tgaatagcgc 240
tcgcttgta ttagctagtt cggccgggtaa cggccccaca aaggccagat cagtagcggg 300
actgagaggt ttgcggcgcca cattggagact gagaacagcg ccagaactcct acgagggaggca 360
gcagtgggga atattgggca atgccccggc gctgtgaccca gcaacgcgcgct gtaagaggaag 420
agaggcttcgc ggttgtaaac ttctttttgc aagggcagaa ccaagtgcagc tacctgaca 480
ataagccagc gctaactacgc tcgcaagcgc ccgccgaataa aatagttggca 540
gagttttattt cgggttgtaaa gggcgctagag cgggaatgca agtcatagtg gaaaactatg 600
ggcctcaacc cataaggctgc atttgaaact gtatattcttg agtgcctggag aggcaatcga 660
attccggtgtg tagcgggtgta aatgcgtgacata ctaacgggag aaaccacagtgc gcaagcgga 720
ttgctggaca agtaactgac gcggagggcg gaaaccgctt ggaagcaaca agtagata 780
ccctggtgat ccagcgcgtca acagatggtg aactaggggtg gggggctgtc ctctcgt 840
gccgcagcta aacgcaatta acctccacct ggggaagttga atcgcgaaggt tgaataactca 900
aggaattgac gggggcagctc acaagccggtg gagatgtttga tttatctcag cgaacgcga 960
agaaccctac cagggccctga cattcactta acaaccagaa gatggtagtag gttgcctctcg 1020
gggaaagtag agacaggttg tgtactggttg tctgcaggtc gtgctgtag tattgtgttt 1080
aagttccgcca acgagcgcac ccctataggt tagtttgctc gcaagacgac tctagcgaga 1140
ctgccggtta caaaccggag gaaagttggg agcagcgtcga aatcatctacg cccttagctc 1200
tcgggcaaca acagctactaac aatggccgcc acaaaaggag ggcgaaccgcg cagaggtggag 1260
caaatctcaa aaggccgctcc gcgttcggat ccgagggctgc aacccggcttg ccgagtttg 1320
gaatcgctag taatcgggag tcagctgcgc ggcggtaata cttcccgggg ctttttcacac 1380
accgccgtgc acacccagag agttggaacc accgcaagtc cgtagcctca cccgcaaggg 1440
ggcggcgcgcg aaggtttggtt cgaatatttg ggtgaggattg taaacagtgg gccgt 1495

References:
- 210> 46
- 211> 1495
- 212> DNA
- 213> Clostridium leptum
- 220> DNA sequence of Clostridium strain 26
- 221> rRNA
- 222> (1),(1495)
- 223> 16S rRNA coding gene sequence of Clostridium strain 26
agagtttgat catggccgca gacgaacgct ggcggcgtgc ttaacacatg caagtccgaac 60
ggagcaccac tgaagggagt ttgggcaaca ggtatggaat gctttagtcg ggcattgtta 120
gtaaccgcggt aggaccacctc ctcgacagag gggaaacacag tggggacgga cttgtaatac 180
cgtcatagtg gttggagccg catgactccg acgtcaacga tttatctgtg gaagatggcc 240
tcgcgtctga tttaagtaaa cggcccacca aaggagcagat cagtacccgg 300
actgagacgt tggccgggca cattgggaac ggaatatgccc ccagacttct actggagcga 360
gcgatttgga atattgggcc atgggccaca gcttgacccca gcaacgcgcg gtgaagagg 420
aagccattccg gttgtaaac ttcttttaag ggggaagagc agaaagcggg atcccccttaa 480
tagcctggcgt ataactacggt gccagcgagc cgggttaatac tggggttggcaa acgtttgtcc 540
ggatttaacttg ggtgtaaagg gcgggtcagcc gggagacaca gtcgattgtg aatctccagc 600
gctcaacggc tgaactccgtc tttacttggg tggccgtgag aagctttcga 660
attccttttggt gtagcgtgtaa aatgcgcagta tataagaga aacaccagttg cgaagcgga 720
ttaactggagc ataactgacg gtggagcgcgg aagccgtggg gggagcaacag aattaaattacc 780
ctggtactccc acgcctttaa cagttgcatac tcggtgtgccc gggactgcacc cctttgcgtgc 840
ccggagttta ccacaataag tatacgacact ggggaagttacg atgcgacagtt gaacctccaa 900
ggaattcagc gggccccccg ccaagccggt gattatgtgg ttaatccgga gcaacgcgaa 960
gaacctaccg agggtttgcac atcctgtcata cgaagatagac atacattagg tggccccttgcg 1020
gggaaaagcag aacaggtggtc gtcgatggttc gtcgcagcggc tgtctgctgag atgtttgggtt 1080
aagttccgaca acgcagcgc ac cccctattggt tagttgctac gcaagagcactctagcgaga 1140
cctgggtaga caaaaagggc gaagccgggcc aagcagctca actcatcatgccccttattgctc 1200
cctgggtcata cactgtaatac aatggcggatt aacaaagggc tgcgaagccg ccgggacagag 1260
cgaaccacca aagccgctcc cagttgcagc gcccacgcgtgc aacccgccctg cgtgaagcgg 1320
gaatggctag taatccggaa tcaagatcggc gcgggtgtaata cgttccgggg cctttgtaac 1380
acgcaccgctc aaaccagtagt agttgggaac accccagagc cccggaagtc cgtgccttta ccggaagagag 1440
ggcggcgcggc aaggtggggtt cggataattgc ggtcgaagtgta caaaccagtt gccgt 1495

<210> 47
<211> 1509
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1)..<223> 16S rRNA coding gene sequence of Clostridium strain 27
<400> 47
agagtttgat cctgggtcag gatgaaagct ggccggcgtgc ttaacacagt caagtcgaac 60
ggagtacccc tgaagaggtt ttcggacaac tgatggaacct acttattgcg ggacgggtga 120
gtaaccgctgt agtaaatcctgc tttggagtgg gggaataacag ctggaacccag cctgctaatac 180
cgcaataaat gtctgtgtcct cattggacact gcataacaag aattattgcct ctaggagcttga 240
cctggtctctg atagcgtcagt tggcgggttga acggccacc aatggccagc agcctgaccc 300
gacctgagg tttggccgccc acatttgggac tggagacagcg cccagactcct taccgggacct 360
agcactggggg aatatggggc aatggcggca acggctgacc aatggccagc agcctgaccc 420
gaagctttttg ggggtgtaaa ctctcttttaa ggggggaaag cagaagacgc tagcccttgtga 480
ataagccaacg gctaaactcag tgcagcgcag cgcaggttaata cgttagtggtc aacgctttgtc 540
cggattactt ggtgtaaag ggcgtctgcag cggagagaca aagcagatgtg gaaatcccaag 600
ggttacccacg gtgaactgca tttgaaactg tttacgccggt ttcggaggtg atggaattcct 660
tgtagccggt gaaatgctgtg agatatggga gaaaccaccag tgcgagggag ttccgggacc 720
tgtactttgac tgtagagttc tcaagctgg gggagcaccg aggaatgaga tacccctgttaa 780
gtcccacgctg tgaacccagt attactaggt gttggggtcca cccaggtctt ttcgggtgctg 840
ggcgcgaaccc ctttggaaat tccacacggtt gaattacgtt tggcaagaaa ggaactccta 900
agaatagtaa cgggggtacc ccccaacggc tggagggctg gtgttttttt tccggaggaac 960
gggagaccc ctttacctttg tctgacccct cggatgacca aagtcgacca tgaacctcctc 1020
cctccgccc atggagggc ggggtggtgcca tgggtctgtg tcagctcgtg tcgttagatg 1080
 ttgggttaag tccgcaacgc aggccccgcc ctatctccag tagccagcag gtagacgttg 1140
gcacctcgga gagactgccc cggataacgg cggagagaggc ggggatgcag tcaaatcttc 1200
atgcctcctta tggatcagggc tacacagctgt ctacaatggc gttaacacag ggaagcgaga 1260
cgggtcgcgg ctggtaagtt aagccaaatcc ccccccataac gtccccagttc ggattgtgtt ctgcaccaactc 1320
actacatgca gctggagagct cttgataactg cgaatcagca tgcgacgggtg aatccgtccc 1380
cgggtctcttg acacacgcc gcgccacca tagggagctgg aatgccccga aagttcagttgac 1440
cacccagaaa ggaaggagct gccgaagttg gccgggttaa tctgggtgaa gtcgtaacca 1500
gtaggcgt 1509

<210> 48
<211> 1583
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1) . (1583)
<223> 16S rRNA coding gene sequence of Clostridium strain 28
agagtttgat cctgggtcag gacgaacgct gcgggcgcgc ctaacacatg caagtgcgac  60
ggagcttata ttccagaagtt ttccgagatg acagagaga agcttagtg ccggacgggtg  120
agtaacacgt gagaacacgt ccctttcagag ggggataaca gttggaaacg actgctaata  180
ccgataacaacgct cttcgcagatgg gcctcggcaag gacagcagca ggtggaagatc  240
ggcttcgccc gcagattgcta gttggtgggg caacggccca ccaaggcgcg gtcgcctagc  300
cggactgaga ggctgtacgg ccacattggg actgagacac gcggcagact cctacggag  360
gcgccgacg gcggatattgc acaatgaggg aacactctgtg gcacgcagcg ctgctgtaggg  420
aagacggctct tccggttgtta aacctcctgtc tttggggaag aaaaatgacgg tacccaaga  480
gggaagctcgg ctcaatacgcc tcgaggacgag ccgggtgtatata cgtaggggag cgacggttgt  540
ccggaattac tgggtgttga aagagcctag cgggagctgag attgtatagt taaatctacc  600
ggcttaactcg ttagtgcgtc cccacaaactt ttggtcttga gtgaagttaa gaggccaggg  660
cggaaattcct tagttgtaacg gggtgaaaat cggtgtagata ttgaggaag aaccacaggt  720
gggcaaggg cggcttgccttg ggtttaactgc gcgcctcgtgg agcgttggaag aacggctggg  780
gagacacaac acagggataatt aatgtatacc ttgtatatgt cacaagtcttg ttaagagtat  840
gattaactta gggtggtttgag ggaagctattg ccctttctgtc tgcggcgcag gcgggaactga  900
attagatgt atcacaacttg ggagaglact ggcgcggcaaa gtttgaacact ccaaaagggga  960
aattgcagacc ggccccggccc gcaccaacgc acaagcctag gtaagttggtgg ttaaaatctcg 1020
agaagcaacc gcgccagagag aacccacattt acgtccctgac atcggtgccc gcataagccc 1080
tagagattag gtgaagccctt tccgggggccc caccacagac gcggtgtctag GTTGTGCTCA 1140
gtcggtgtcg tggattgttg ggttaaggctt cggcagaacgc ggcaacacct tattatatct 1200
ttgctacaagcagagacactctt aatgagacagt ccgttgacaa aacgggaggag gggtggaggatg 1260
agctcaaatc atataagccc ttatgacactt gtgcttcgcgt taatccgcgtt 1320
cagagggag acacgctacg acgtaagcagc aatctcctcaaa aagtgctcctca gttcggatgtg 1380
caggcgcagct cgcttcgctg aaggtcgctg atttggttagta atcgctgggatg cagatgcggc 1440
ggtgtaatacg tcgccgggcc ttgtaacacg ccggctcgtcgc accatggggtg tcggtaacac 1500
cggagcgcgg tagtttaacc gcaagggagg cgctgctcttg ggtggtctttt gacatcggg 1560
tgtaaggtgata acaaggttagc cgt 1583
<220> rRNA
<221> (1..(1519)
<222> 16S rRNA coding gene sequence of Clostridium strain 29
<223> 49

agagttagat catggcctcag gatgaacgct ggcgggctgc ctaaacatgc caagtcgaac 60
ggtgttaggg gaaaggagcc tcggccggaga aacccctgtgc atgaggtggc gacgggtgag 120
taaccgtgct gcaacctgccc ctgtacaggg ggataaactc tagaaatagg ttgtaaatcc 180
gcataacggg ggaagccgca tgggttttcct ctggaataactc cggtggtaca ggtggcggc 240
gctctgtatt agccagtttgg cagggtaacgc cctctactaaa ggcagcagctg gtacggcggc 300
tagagggcgc gagggcgcaca ctggagaatgtc gacacggccc agactcttacct gggaggcagc 360
agttgggggat atggcacaatt ggggggaaacc ctgtagcagcg gagcggcggct ggtggaagaa 420
ggcctcctggc gcgttaacagg ctgctcagcg ggaagaaataa tgaagttaacc tgaagaagaa 480
gccccgggtct aacattgtgct cagcagccgag cggttaattacc ttagggggcg gcgcttattc 540
cggattactt gggggtttaaaa gggggggcga acaggcggatg gcacgtcggag aatgggaaggc 600
cggggggcaca aacccgggct cttggctttcg ggaacgtgccc ttgggtggga gttggcaggag 660
gggcagggcg aaatccctcgt tgtagcgcggt ggaaaatggc taataaatcga gagaagaggc 720
cggttggggaa agggggccttg tggggcagctgc gaaacgtgactc taaaggggca aagcttgagg 780
gaacaaaaacag gatagattcct ctaggtatttc ccagcggctaa acgttgatta ctatagttgc 840
gggagcgagag actgccgggt ctggccagcaac gcgataatga taatccacct gggggagtaag 900
ttcgcaagaa tgaacactcag aggacttcag cgggggcccaca acagggtgct gacatgtggc 960
rttaatccgag aagacgctgga gaaagccttcat ctgggatttga cattccggatg agggagtggg 1020
aagagctcatt tccccctcgg gacattggaga caggttgggtc atgggtttgct tcagctcgtg 1080
tcggtgagatgc tgggtttaagg ctcggcaacgc aggcaacaacct ctatttccag tagccacgcag 1140
gtagagctgagg gcctctcggcg gagaattgcgg cgggtataggg ggaggggagc ggggtggagc 1200
tcaaatacttc atgccctctta tgtacaggggc taacaaatgc tcagttgctgg gtaakaagaa 1260
ggaagcgagag cgggtacggtt aagcaaatcc caaaaaatatcgtg cccccagtgtg gattgtggt 1320
cctggaaactcgctgcaatcgcg ctagtaatttg cgaattcaggat ggtcggggtg 1380
aatcagctggg ccggcttttgt gacaaccccccgctcgcagcggtag tgggagttcgg aatgcggcga 1440
agtacggtcactcagctggaaa ggaagggagtgc gcggcagattgc ggggtgctcag ctggtggtaa 1500
gttcgaacatt ggtggcgggt 1519

60
DNA

Clostridium coccoides

rRNA

(1..(1497)

16S rRNA coding gene sequence of Clostridium strain 30

50

agagttggat cctggctcag gatgaacgct ggcggggtggc ctaacacatg caagtgcgaac 60
ggggtatata agcgggaagtt taoggtatat gatgttatata ctttagtggcg gacggggtgag 120
taacggtggtag ccaacctgcg cctgtgccgggg gataaccgcc tggaaacagg cgtataatcc 180
gcataagccgc atacagccgc atgggtgtat ggcgaagagct cccgccgcac gggatgggcc 240
cgccgccgct tagccagtgg gccgggttaac gcgcccacca aagccagcagc ggtggccgcc 300
cctgagagcgc ggaacggccac atttggagctg agacacggcc caaactctca cgggaggccag 360
cagtggggtaa tattgcacaa tggggaacac cctgatgcag caacgccgcg tgggtgaagg 420
agcgttcggc ccgtgtaaqg cctgtcagcg ggggaagaaga aagacggtac ccgaccaaga 480
agccccggcct aactacgtcg cagcagccgc ggttaatacgt agggggtcag cgttatcogg 540
aattactggg tgtaagggga gcgtcagcgc cggggttaac gcgtatgcgg aacggcgggc 600
ccaccccgccg aacctgtcttt gagacgtttt tcgctggagta tgggagggcc aagccgaatt 660
cctggttagc ccggtgaatag tgtagatatc agggaggaaca cccggtgcca agccggctta 720
cctggaccata actgacgttg aggcttggaag gcaacaggag ttagatacct 780
ggtagtcac gcgttaacag tgattacag gttgcggggt tcgaaggcc gcacciagggcc 840
gcagcgaacgc cagtaagtaa tcacacctggg gcagtaagtt cgaagaagta aacctcaagg 900
aatgacggg gaccgacaca agcgcgtgag catgttgtttt aattgaaagc aacgcgaaga 960
acottaccc gccttgacat cccctggaac gcatatgtta tgtatgtttt cttcgggacc 1020
agggacagc gttggtcagt gttgtgtcag gtctgcgtgcg tggactgttg ggtcaagtcc 1080
cgaacagagg gcacaccctg ccccatctag ccacacttta agatgggcaac tctgggggga 1140
cctgcgggga taacccggga agaaggcggga atgacgctaa atcactcatgc ccccttattgc 1200
cggggctaca cacgtgctac aatgacgtaa cacaggggag ggcgagcagc gatgttaagc 1260
gacaccccaaa aataagctcc cacctgctgag tgcagcctgc aactcgctgcg catgaagctg 1320
gaatcgtag taatcgcgga tcagaatgcg gcggtggaata ctgatccgggg cctttgcatc 1380
acccgctgct aacacatggg agtcgggaaac gcgcgaagcc ggtgaccgaa ccgaaaaagg 1440
gaggagccgct cgaaggggac cctgtgact gtgggtaagtt cgtatcaaggg tagccgt 1497

51

1475
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1...1475)
<223> 16S rRNA coding gene sequence of Clostridium strain 31
<<210> 52
<<211> 1491

```
gattttgatc ctggctcagg ataaacgctg gcggcgcaca taagacatgc aagtgaagcg 60
aacattaatac ttgctgtcga aggtaaacgg ttgtagtgccg actuagttgact aacaagttaag 120
aaacctgcct atcagaggg gataacagag gaaatctacc ggttatacgg cataggtctgat 180
agtatagcga ttgcaaggttaa cggcttacca agggctcgcag acaggtcgcc cctgagacgg 240
ttgcctagtt ggtggggtaa cgaacgtcgc aagcttacgg cctgacggtt gccgtgggcc 300
tgaacggcccaactgggtctg agacacgccc caaactctct acgggggaa acaggtgagcga 360
atatgcaca atggggggaa cctcgtagcta gcggacgcgc gcgtggtgaag aagttatccgt 420
gtactaagg ctctatcacg agggagaaaa aagcaagttc cttgactaaga aagccggcgc 480
taatatagtgg ccacgcagccg cggttaatagc tagggggtaa cgggttatccg gattttactgg 540
tgttaagaaa gctgtgggag caagctttcg aggtttttgc cccactgctgcc cddatgaa 600
actgtttttc gaaatgctgac gcttaaggtcc agagagttac aacggcagttc tagttaagcg 660
agttaaagtc gttaactgcgc gtttattactg gttggagtgc aagggaggtc aacagtaacc 720
acttgacggtg ggctttgtaa cgtgtaagtc aacgcttc tgggtttttc gcgggtgccgc 780
ccgtaagccg tcgggaggt tcgggaggtg cggggagagc gcgggagagc 900
cggcacaag cagttgagata tgtggtttta ctggagcgcg cgggaggaac cttaccaggt 960
cttgacatcg aagcttacccg aaggtggacgtagt gttggtttta ctggagcgcg cgggaggaac 1020
tgcatggttc tctgggacgc ccgtctgtag gcggagggat aaggtggacgtagt gttggtttta 1080
ctcgttattt gcgcgtgcct cgggagggat aaggtggacgtagt gttggtttta ctggagcgcg 1140
gaggtgggg aggtgaggta aacatcagttc tccctatagct cggggagggat aaggtggacgtagt 1200
aatgggccgct aagcagaggg gcggagggagcg gcggagggagcg gcggagggagcg gcggagggagcg 1260
caagtgggtt gttgggcttgc gcttagttgcc gggaggtggat aaggtggacgtagt gttggtttta 1320
tgccgttgagcgct gtgcttggagc gttgggcttgc gcttagttgcc gggaggtggat aaggtggacgtagt 1380
agccggagagc gcgggaggttc gttgggcttgc gcttagttgcc gggaggtggat aaggtggacgtagt 1440
tggttaatgg gttgagagct ccacccagtt ccacccagtt ccacccagtt ccacccagtt 1475```

62
DNA of Clostridium leptum

rRNA (1..1491)

16S rRNA coding gene sequence of Clostridium strain 32

```
agagttttag cctggctcag gatgaacgct ggccgcgtgc ttaacacatg caagtcgaac
  60
gagaatcagt ggattgagga ttctgtcacaat tgaacagtga gaaagtgcca gacgggttagg
  120
taacgccggt gcaatctgcc ttggagttgg gaataacgcgc tgggaacagc gcagtaatcc
  180
gcagatataca gttgggaggcc atctctctgtga ctcgtaaagata tcattcgatc tgaagatgac
  240
tcgctctgta ttagctagtgt ggagggttga acgccccacca aggcgacgat cagtcgacgg
  300
actgagaggt tgtgccccgca cattgggacc gacacagcgc cccagactcct acgggagcac
  360
gcagttggga atattgagca atgggccgca gcctgcaccc gcaacgcgcc gcaggaagaa
  420
aagcctttcgc gttgttaaac ttcctttcttg gggagcaaac aatagacggt accccacggaa
  480
taagcccaag tcaactacgtgc cacgccagcc gcggtaataac gtaggcttgac agcgtttaccc
  540
ggatttatttg ggtgtaaagg gcgttaggc gggtatgcac gtcagatgctt aaaaactcatg
  600
gctcaacccca tagcctgcat tggaaacgttt attcttcggag tgctggagag gcaatcggaa
  660
tccggtgtgtgc agcggtgtaaa tgcgttagata taagggagga caccagctgcc gaagcgagatt
  720
gctggacagt aactgacgct gcggccggca aaggctgggga gcctgatgaccc ttagataacc
  780
tggtagtcac gcgcgtagac agtgagacta gttgggggggt actgaccccc tcgtggtcccg
  840
agctaacgca ataagtatcc ccaaccttgggg agtacgatcgc caagttgagaacctaagggg
  900
attgaaggg gcccgccacca gcggttgaggt atgtagttta attcgaagca acgcgaggaac
  960
ccctcaccagg gccatgaacatctgctcaacgc accagagatg gattaggtgcc ctctcgggga
 1020
aagcagagac agggggtgcac gttggtctct cagctgcttgct ctggtagatgt tgggttaagt
 1080
cccgcaacgc gcggcacaac cc tattttgttg tgcctagccaa gacacattca ggctgactgc
 1140
cgttgacaaa acgggagga gtaggagcgca ctctccaatca tcatgccccct tagctcttgg
 1200
gccacacacgc tataaactgc gcgggtacca aagagagga aacgccggcg atgggagcaaa
 1260
tctcataaacc cgcgctcagt tcggatcgcgc ggctgcacacc ggccttgctgg aagtggataat
 1320
cgctagtaat cgcggatcgac cgctgccggg tgaatcagtgc cccgggcttctgtacacacgg
 1380
cgcgtccacac catgagagct gggacaaccc gaaggtccgta gcctaacgcgc aaggggaggg
 1440
cgcgccgaccg tgggttcgat aatggggtgtag aatctgtaacc aaggtgcggc tgggggtgtg
 1491
```

<211> 1495
<212> DNA
<213> Clostridium cocoides
<220>
<221> rRNA
<222> (1)..(1495)
<223> 16S rRNA coding gene sequence of Clostridium strain 33
<400> 53

agagtttgat cctggctcag gatgaaagct ggccgctgtgc cttaacacatg caagtcaaac
60
gggtgtacgg ggaggaaggc ttgggctcggga aaaaattgtgc atgagtgggc ggcgggtgag
120
taacgcttgg gcacactggc ctgtacagg ggataaacct tagaaaattg tgtatatacc
180
gcataacgggg gagaagccgca tggctttttcc ctgaaactc oggtggtaca ggaatgggcc
240
gcctgatgatt agccagttgg cagcttaaccgg ggcagcagatca gtagccggccc
300
tgagagggcgg gcaagccaca cctggaactg gacacgccccc agaactctac gggagcagc
360
agtgggggtat attgccaaat ggggggaacc cttgatgcagc gagccgcgtgt gggtgaaaga
420
gccctgcggc gcgttaaagccc ctgtcagcag ggaagaaaaat gacggtacact gaaagaag
480
ccccggctaa ctacggctcga ccagcggcgcg taataacagct gggccagagcc ttatccgggt
540
ttactggtttgt taaggggggc gcgacagggcg atgcaagccca ggaagtaaga cccggggccc
600
aacccccggga ctgtcttctgg aacctgctggc acggagttgca gggggcgcac gcggaaaaatc
660
tggtgtacgg gtaaatgctg tagatatcag aggaaaccgg ctggcggaaaag cggctgctgtg
720
gactgcaacct gacggttggag cccgaagggct gttgggagcaag acaggttacctg ataccctgt
780
agtccagcg ccggaaagat agattactagtgt gtcgggaagcg agagacgccgc cgggtccgca
840
gccaacgcca ttaagttaccc acctgagggtag ctcgttctgca agaatgaaca ctaaaggaat
900
tgacggggagcc cgcacaaaggg ggtgagcagc tgggttttaatt ctcgaagccc gcgaaaaacc
960
tttacagccg gacgctcattc cctgaccttc gctgagttgg ggcggccttt tttgggccagg
1020
ggagacaggt tgtgactatgt tgtgctgcagc tctgtgctgtg agatgtttgg gtaagttcgcc
1080
cacagagcgc aacccctggcc gcacgtgagcc agcatatttcg gtcggggacct
1140
gcgcgggaca accgggagga aggccggtgat gacgctcaatt cttcatgcgcc tttatatgctt
1200
gggctacaca cgtgctacaa ggccgagcgc agagggggaa gaagcggccgca cgcgggagca
1260
aacccaaaaa cggcgcccca gttggagtgg tagctctgcaaa cggcactaca ctaaagggca
1320
atcgctagta atgcgggattc agaatgccccg ggtgaatagct tttccggggtc ttgtacacac
1380
cgccggctcacc accaggggac cgcgggaattgc gcggagttccg tgaacgcaacc ctaaagggga
1440
ggggcagcggc aagggcgcggc cggctagtgg ggtgaagtcg taacaggtac gcgg
1495

<210> 54
<211> 1493
<212> DNA
<213> Clostridium leptum
<220>
<221> rRNA
<222> (1..(1493)
<223> 16S rRNA coding gene sequence of Clostridium strain 34
<400> 54

agagtttgat cctgggtcag gacgaacgct gcgggctgtgg ttaacacatg caagtctgaacc 60
gagacccccc tgaaggagtt ttgggacaac gcattgggaa cgttgtgtgc ggaccttggta 120
gtatccgttg aggaccaagtc ctctccaggg gcagaacacgg ttggaaacga cttcaataac 180
cgcatgtgtgc tgtggaagcc catgaccccttg acgttaaagtt tttatcgttg gaagatggcc 240
tcgttctgta ttggttagtt ggtgagttaa cggccccacca aggagacagat cagtagcgg 300
actgagaggt tgtgctggcaca catgggacttg gatagccgc cccagactcttg acggagagca 360
gcagttgaaa atattgagca atggcagcga ctctgagccac gcaacgcccc gtgaagggag 420
aaggttttcg gttggtaaccc ttctttttaag cgagaaagac agagacagtct acccctttga 480
taagccccgg cttaactcgtgc gccagcagcgc gcggtaataac gtaggtggca agcggttgcct 540
ggatattcatg ggtgtaaggg ggtgtcagcgg gcagagcaca gtctagattgtg aatccacgg 600
gctcaacgcc ttgaaactgtct ttcccttgag tgcctgggagag gtaatcggaa 660
ttcccttgtgct acgcgttgaaag tcgcctagata taagggagca caccagttgac gaggccggaat 720
tactggagcca taactgacgg tgaggccggc aacgcgttggc aggcaacacggtt attagataacc 780
cctgtcatccc cagcctgttaaa gatctgtatacg tgtgttggg gagactggtgtc ccctgtggtgc 840
cggatgtaac acaataagta tccacactcg gcgactgtgc gaggtctacgc cggaaagttgg aacactaaag 900
gattgacgg ggcgggccgac aacgcgtggga tgtatgggtaaattctggaagac ccagcggagaag 960
aaccttaacc gggccttcaga ttcctgtcataa gaaagttaga tacattaggt gccccttggg 1020
gaaagcgag acacgtgggtgt cgtggtctggt cgtgctaggt gttgggtaaag 1080
gctcgcacac gacgcgcacac ccctcttgtaa tgtgtgctccg ccagagcactt tagcagagct 1140
gccggtcagc aaacgagagca aggccggggag gacgcttaaat catcatgccc ctattgtcct 1200
ggcctactaca gtaataacca tggcgggttaaa caaaggtgga caacagcggagc aggccagacg 1260
aacccccaaa ggcgcttcaga tgtttgctgc caggctgcaaa ccggcttgtgc tgaagtcggaa 1320
atgcgtatga atgcgcggtgct acgatgcgctg ctgtgaatagc ttccccggggc ttcgtacacac 1380
cgccggtcagc accatgagag cgcgaaaccc ccgaatctgc gcggccttaacc gcagagaggg 1440
cgcgcggcggaa ggtggggttgc ataattggtgctgaagtcgtga acaaggtgatg 1493

<210> 55
<211> 1498
<212> DNA
<213> Clostridium coccoides
<220>
<221> rRNA
<222> (1..(1498))
<223> 16S rRNA coding gene sequence of Clostridium strain 35
<400> 55

agagtttgat cctggctcag gatgaacgct ggccgctgtgc ctaacacatg caagtgaacc 60
gggtgtcagga aagggcagta cgctgtgc gaaggttggc cggccgtcag 120
tacgtgag cgccacttgcc ggtgtgag ggctgtgacc atagctgtgc 180
gcccttggcg gaggtgtcag cttcaccgtc cggctgtgacc ggtgtgag 240
gggtcctgatt attttattgg gcccttgcag cgcctcgacc atgcctgccgagt 300
cctgagagggc ggcgaacgccactg agacacgccc cagacactta cgagaggcag 360
cgtggtttggg tgttggctgcag cctgtgcag ccagagcgcgtgc ggtgtgaga 420
agccctcgcc gcgggttaga cttgctcgag ctgtggtgag tgggtgaga 480
gccgtccctgg ctcgccgacc agcgccgacgcc ggtgtgaga gcccttgccactg 540
tttacttgggt ttacttgggt tggagtggagt gtcgagcgcc gcgggttaga 600
caacccccg cccgctcccacttg gcgggttggagt ggtgtgaga gcccttgccactg 660
tgcggtggtgtg gccgcgtgag cttgctggagcgtgc ggtgtgaga gcccttgccactg 720
tagttgagcccgccctgcag ggtgtgagcctgcag atgccttgcc ggtgtgaga 780
gccgtttcagg cgcggttcag cggctgtgtg ggtgtgagcctgcag atgccttgcc 840
gcagcgccactcg cgggttgga ggcgggttggtcag atgccttgcc ggtgtgaga 900
gatactgcc ccacccgctgcag ccacccgctgcag atgccttgcc ggtgtgaga 960
aaccttacca gcccttggcag ccacccgccctggctgtgc taggtgggcgctgc ggtgtgaga 1020
agggagaca ggtgtgtgcag ggtgtgtgcag ccacccgccctggctgtgc taggtgggcgctgc ggtgtgaga 1080
ccgccagccgc gcccacccctgcacccgacgtag ctggtgagcctgcag atgccttgcc ggtgtgaga 1140
actgccccctggg ccaaccctggg ggtgtgagcctgcag atgccttgcc ggtgtgaga 1200
tgcggtgcata cccgctggcc gccggttggtcag atgccttgcc ggtgtgaga 1260
ccacccctggg ccaaccctggg ggtgtgagcctgcag atgccttgcc ggtgtgaga 1320
ccacccctggg ccaaccctggg ggtgtgagcctgcag atgccttgcc ggtgtgaga 1380
ccacccctggg ccaaccctggg ggtgtgagcctgcag atgccttgcc ggtgtgaga 1440
ccacccctggg ccaaccctggg ggtgtgagcctgcag atgccttgcc ggtgtgaga 1498
DNA

Clostridium leptum

rRNA

16S rRNA coding gene sequence of Clostridium strain 36

56

agagtttgtg catggctcag gacgaacgc tggcggcaagc ttaacacatg caagtgcagc 60
ggcgcgctta tgaaggagt ttcgggctaac ggaataaggct gctattgtgc tggcgggcggc 120
gtaacgcgtga aggaacctgc ctctcagaggg gggcaacagag tggccaaagcag cttgctaatgc 180
cgcataacac ataggtggctc cgctgctcatt ctgtcaagaga tttatcgtgct aagatgcccc 240
tcgctgctgga ttgctgattggtgagttgaga cggctcaccac aggcgcagcgt cagtagccg 300
actgagaggttg tagggagggca caattgggggca cagataagcgc ccagactcct aaggagggc 360
gcagtggaag agatgtgggca atggagccgtgc ctcctgcacca gcaagcggggt gtaaggaag 420
aagccttctcgt ggtgtaaacc ttcttttaag aagggagagc agagacagt acctctttgaa 480
taagccacgtag caaactgagtg tgtcgttggc caaagtggagc atggagaggggg 540
gatcttcagttgtgaagggcctggtgacagctg cagatgtgaaa attccggggc 600
tcaccccgagaccttgatcc gaaactgttggt ctcctgagta tggagagggc aagcggagtt 660
cctagtgtgct ggtgtgaattgc tctgtatattgc agagggagcaga ccagtgccccagcgggctctg 720
cgtgcgaacca actacggtgag aggccgcaa ggctgagggc caaaggagatg tagataacct 780
ggtacgctgcg cggtagatacg atggagccct ggtgtgagggc gactgaccccctgtcgcgaggc 840
cagttgactc aataactaatgc cccactgcggg aagtgcagc ggaagttgaa actccaaagga 900
attacggcagcagcgccgca cggctgagatt gcgtgtgcatt atgggttaattgtggatgc ccgcaagagaa 960
cctgccaggg cggtagcatacg cctgttaaagc gtagagatactgcaagcagcctgctgggg 1020
aagcagagac agggtgtggtca tgggtgtcgtt cagctcgtgt cttgagatgtg tgggttaagt 1080
cccgcggcaacgc tttggtttactg tagtagctgc tggcagcaacgc gagcactcatt ggggtgactggc 1140
cggagacgcgc cggagaggagc tggggacgcgc tcaatcaactc caagttcctgc tgggtgcgg 1200
tgtacacccgc tggttacagt gccgtcggagc ttggaatgac gcctgaaccttc gtcctgctgg 1260
ccctaaaagc cggctcactgc gcaagttttgc gctgtccacac cttggtggcctg cgtcagcgc 1320
ccgttagtact gcgcggcgtcag cgggtcgcagcgtgaaa gtaattcggcctcgccctgc tgtctcgcg 1380
ccggctcacc cagcagagtc gcggacaccc ggaagtcgtgc ctgctacccgc aggaggcccgtg 1440
cggcggcaagg tgggttcgat aatttggtgtagc aagcgtgtaacc aagcgggc 1491
16S rRNA coding gene sequence of Clostridium strain 37
<210> DNA
<211> Clostridium leptum
<220>
<221> rRNA
<222> (1). (1493)
<223> 16S RNA coding gene sequence of Clostridium strain 38
<400> 58

```
aaagtttgat cctggctcag gacgaacgct ggccggtgct ttaacacatg cagtcgaaac  60
ggagcaccccc tgaaggagtt ttccggacaac ggatgggat gcttgtgtgc ggactggtga  120
gtaacgccttg aggaacctgc cttccagagg ggacaacag ttggaacaga ctgctaataac  180
cgcattgattcg ttggagggccattgactcgg acgtcaaaag tttatcggct gaagatggcc 240
tccggtcttga attctaggtggtt ggtgagagaattggcccacca aggccacgat cagtagcggg 300
actgagaggt tggcgcgcca catgaggact gagatacggc ccacagacct acggagggca 360
gcgatgggca atattggcga atggacgcga gtcggcacc gcaacgccgc gtgaaggaag 420
aacgctttcgc ggtttgtaacact tcttttaaag ggggaagagc agaagacggt accccttgaa 480
taaggccacgg ctaactcagct gccagcagcc gcggtaataac gtagtggaac gctggtgtcgc 540
gatattctgg gttgtaaggc gttggaccgag gtaggaacaag tcgagatgtga aatccacggg 600
tcaacctccgg gtaactgcatt ttgaaaacttt ttcccttacgt ggtgagagaacttgggaaat 660
tcttggacatg aacgtaagatt ggcgtagatag aacgtaagatt ggcgtagatag aacgtaagatt 720
actgagaggt tggcgcgcca catgaggact gagatacggc ccacagacct acggagggca 780
cggagctttgct acgtgatccg ggtggaggac gtagagatgg gaccgagacc cccctgcgtgc 840
cggagatcaac acataataagta tccagacctgg ggagatcagat cgcagatgag aaactcaaaag 900
gaatggcagg ggccgcccac aacggctggga ttaatgttggg taattggaaac aacggccgaa 960
aaccccaaac ggggctcaca tctgtcaaac gagaagatga tagactgggc gctttccgg 1020
ggaagtagag agaattgttgc catggtgtagc gtcgatcgcgt gtcgatcgcgt gggtggtttaa 1080
gttccgcaacc gacgagcacaacc ctattgtgta gttgctacgc aagagcaactc tagcagactc 1140
gccgttgaca aacagagaga aacgggaggac acgtcacaac cattcgcaga ctatatttgcct 1200
gggtcacaac gtaatataaa ttggcttgtaa caagaggtag caaagggcgc aggagacgag 1260
aaccacccaa gacgctccca gttggagact gctgggtcaac cccctgcgtgc tgaagtgcgga 1320
atcggtagta atgcggagtac agcatgcgcc ggtgaataacgt tccggcggccgt ttgtaacaac 1380
cgccccctcacc acatgagagc acgggacaca cggagacgttc gtaggtaaac cgaaggagg 1440
cgcggcggcag ggtgggttccg ataattgagcg tgaagagtcga caacgaggtgcg 1493
```

<210> 59
<211> 1511
<212> DNA
EP 3 178 483 B1

<213> Clostridium leptum

<220>

<221> rRNA

<222> (1). (1511)

<223> 16S rRNA coding gene sequence of Clostridium strain 39

<400> 59

agagttttgat ccttggtcag gacggaacgct gcggcggctgct ttaacacatg caagtctgac 60

ggagcaccct tgaagggagtt ttggagcatac ggttagtggc ggactggtgta 120
gtaacgctgtg aggaacctgtc cttccagaggg gggacacag caccaacgca tctgtaatc 180
cgcatgtatgc gttggagcccg cacgactcccg acgtcaaaag tttatcgtgc gaagatggcc 240
tcgcgtctgta ttactggtttt ggtgaggttaa cggccacacca aggctgacgt cacagctccg 300
actgagaggt ttggccggcca cattgaggtc gagatacgcc cccagaacctt acgggaggca 360
gcagttgggca atagggcca atggagcgcatgtcgc acgcgcggcc gttggaggag 420
aggtttctcg ggtgtaaaac tttcttttaag gggggaagagc agaagccggt acccccttga 480
taagccacgg ctaactcatgc gccacagccg ccggtaattac gtgatgcttac agcgtttgac 540
gagtttaactg ggtgtaagg ggcgtccgacc gcacagacac gtctagatgt gcaatatccgg 600
gtctcaacgg tgaactgcct ttaaaatcgt ttctccttgag ttctgctgag gtaatcggac 660
tttcttttgt tgtggctgaaag tgggtagata taaggaagac accagtggcc aagcgagtaa 720
cggcagata actgaaggttg agggccgaaaa ggtgggggag ccaacaggat tagatacctg 780
ggtgtatcag gcgtaaaccgt atcgatactta gttgggctgg gggctttgac cccctgcggt 840
tggccggagtt aacaccaata agttatccgg caccctgggag agtacagatcg caaagggtta 900
aaactcacaag gaaatggacgg ggggccccggccccagcgccg cggggattat gttgggattat 960
ttgggaagca cggcagaaag cccactcaggg ctttgacatc tctgcaatcag agtttagata 1020
cattaggtgc ccctcggggag aagtagagac aggtagtgcc taagagcttg cagcctcgtgt 1080
cgtgagatgc tgtggatagct cccgcaacag gcgcacccca cttgtgatag tgggtcagaa 1140
gacacactcta gcggagactcg gggttacaaac aaggaggaag ccgagggacag cgctcaaaatc 1200
tcattgccccct tattgtcctgg gctacacaagc taataaacag gcggtaaaca aagggagtcg 1260
aacgccagg gcggagcggaa ccccaaaagcg cgttcctcagt tgggtcacga ggcggtaacc 1320
cgcctcgggtg aagtaggtaaat cgcctgatcat gcgtggatcag catggcggccgg tgaatatgttt 1380
ccgctggcctt ttcacacacgg cccgtcacac cactagagtc gggacacacc gaaggtagtaa 1440
gctacacgcg aaggagggcc gcgcgcggag cgggtaatcg aatgggggtgg aagtgtaaacc 1500

<210> 60

<211> 1499
DNA
Clostridium leptum
<rRNA>
(1..(1499)
16S rRNA coding gene sequence of Clostridium strain 40

agagtttgcag ccctgccctgataaaagctggccgccatgcctaaacatgcaagatcgaac

ggagccgcctttgaaagagaggttctcggtcaaacggaagagggaggctttaggcgccagcgggtga

gtaacgcgtggaaacctgcctcagagagagggggtagggaccctcaacacaccagtgaagagcgct

cgcataacatagtggagggcatccttttcataatcagaggattttggtatggatgttagagctggcc

tcgcgtccatattcgtaggtgggtaggtaaccggcaccnagagacagtctgggacggccatccttgtgcgcgcaatgcggcgtgtagaggct

gcagtttggagatatttcacatggggagggacccctctgtgaccagatgcggcttattcctgtggagagagtgagaagtaggtgaggctaatgt

16S rRNA coding gene sequence of Clostridium strain 40

agaagacttcag ctcgagtggtaaggcggataggccatgatgtagtagtaacacccatgctgtttcggt agaagctagctgcgtgtctgtgctagctgcgtgtctg
<213> Clostridium coccoides
<220>
<221> tRNA
<222> (1)..(1512)
<223> 16S rRNA coding gene sequence of Clostridium strain 41
<400> 61

agagtttgat cctggctcag gatgaacgct ggccggctgct ttaacacatg caagtcgac 60
 ggagatatca tttctgaagc gattagttta cttaagagcc agatgttgcg atcttagtgg 120
 cggacggggt agtaaccgcgt ggtaaacctg ctctgcactg gggtatctcgattagata 180
 ggtgctaata ccqctacaac gtaggacacg ctatgcttttt acttgaacat tccggtgggtg 240
 taagatggac ccgcgtcttgta ttagcttgggt ggcggggttac aagcccaac ccgcaagtcc 300
 cagtagcggc cctgagaggg tgaacggaac cattgagctc gacacagggc ccaaccctcct 360
 acggggagca gcagttggaga atattggacaa atggggggaa cctctgtcaca gcagcgcgdc 420
 gttgagttgaa aaggatttggc gtatgtaaag ccttatcagc agggaagaaa gaatagcagg 480
 tacctgacta agaagccgca cgtaaactacg tggcacgacgc cgccgtaata cttagggggc 540
 aagcttttac ccggattact cgggttaaag ggagctgtgca cggcgaattc agtcgtagct 600
 gaaagcgggg ggcgcacaacc cgcgactgct ttggaaactgt tattggctga gtgcggagaa 660
 gtaagttgga attcctagtg tgcgggtgaa atgcgtagat attaggaga acaccagttg 720
 cgaagcgggc ttactggaact gtaactgacg ttgagcgtggt aagccgtggg gaccaacaa 780
 gattagatac ctggtagatca cgccgtaacc gatgatcacc gttttccttggt ggttatggac 840
 ccctcggttg ccgagcaaac gcagtagctg tccacctggg gacatcatt gcagaagatcg 900
 aaacttccaag ggaatagccg ggaggacccgg cacaagccgt ggagccatgt gcattactac 960
 aagcaacgcc aagaacctta cccaaagctt ctgactacggt cgcagttgcag taacgctact 1020
 ttccctcccgg ggccagccgag acaggtgtgg cttggttggc gcgtacgcttg gcgtgagat 1080
 gttgggttaa gttccgcacac gcagcgaacc cctatcctct gtagccagcg aagctagctg 1140
 ggcaactctag ggaactgcgc ggggacaccc cgagaggaagg tggggatcag tcaaatcat 1200
 ctagcccctt atgatatggct ctagcagctc gtatcagtag cttggggtac aagataaca 1260
 cctgtgtaagg taagccgaatc ccgagaaataa cgtcctcgtg cgggtttagt cttgcacactc 1320
 gactacatga agtctgaatc gctagtagct gcccagcggta atgccgctg gatagctgcc 1380
 ccgggtctttg tacacaccgc cctctacacc atgggagtctg gaatgcgggc aagctcttgtc 1440
 cccaaccccgt gaagggagga gcacggcgaag gaagggctgga tgactgggtg gaagttgtaa 1500
 caaggtaggc cgg
Artificially synthesized primer sequence

SEQ ID NO. 62

```
ggtgaatacg ttcccgg
```

SEQ ID NO. 63

```
tacggctacc ttgttacgac tt
```

SEQ ID NO. 64

```
aaatgacggt acctgactaa
```

SEQ ID NO. 65

```
ctttgagttt cattcttgcg aa
```

SEQ ID NO. 66

```
 gcacaagcag tggagt
```

SEQ ID NO. 67

```
gcacaagcag tggagt
```

SEQ ID NO. 68

```
gcacaagcag tggagt
```

SEQ ID NO. 69

```
gcacaagcag tggagt
```

SEQ ID NO. 70

```
gcacaagcag tggagt
```

SEQ ID NO. 71

```
gcacaagcag tggagt
```

SEQ ID NO. 72

```
gcacaagcag tggagt
```

SEQ ID NO. 73

```
gcacaagcag tggagt
```

SEQ ID NO. 74

```
gcacaagcag tggagt
```

SEQ ID NO. 75

```
gcacaagcag tggagt
```
<212> DNA
<213> Artificial
<220>
<223> Artificially synthesized primer sequence
<400> 69
cgctacttgg ctggttcag 19

Claims

1. A composition for use in a method of treating or preventing an infectious disease by inducing proliferation or accumulation of transcription factor Foxp3-positive regulatory T cells, the composition comprising, as an active ingredient, bacteria belonging to the genus Clostridium of clusters XIVa and/or IV, wherein the bacteria induce said proliferation or accumulation of transcription factor Foxp3-positive regulatory T cells.

2. A composition for use according to claim 1 wherein the bacteria belong to Clostridium clusters XIVa and IV in combination.

3. The composition for use according to claim 1 or claim 2 wherein the composition further comprises bacteria belonging to a Clostridium cluster other than Clostridium cluster XIVa or cluster IV.

4. The composition for use according to claim 2 or 3 wherein the bacteria belonging to Clostridium clusters XIVa and IV in combination comprise multiple strains of bacteria belonging to Clostridium cluster XIVa or cluster IV in combination as an active ingredient.

5. The composition for use according to any one of the preceding claims wherein said bacteria according to any one of the preceding claims are in the form of spores.

6. The composition for use according to any one of the preceding claims wherein said bacteria are obtained from a fecal sample obtained from a human.

7. A composition for use in a method of treating or preventing an infectious disease by inducing proliferation or accumulation of transcription factor Foxp3-positive regulatory T cells, the composition comprising, as an active ingredient, a spore-forming fraction of human fecal matter, wherein the spore-forming fraction induces said proliferation or accumulation of transcription factor Foxp3-positive regulatory T cells.

8. The composition for use according to claim 7, wherein the spore-forming fraction is obtainable by chloroform treatment of human fecal matter.

9. The composition for use according to any one of the preceding claims wherein the infectious disease is an infection by Clostridium difficile.

10. The composition for use according to any one of the preceding claims, wherein the composition suppresses proliferation of effector T cells.

11. The composition for use according to any one of the preceding claims wherein the composition is formulated as a pharmaceutical preparation for oral administration.

12. The composition for use according to any one of the preceding claims, wherein the composition is formulated as a pharmaceutical preparation using a composition that enables delivery to the colon.

13. The composition for use according to claim 12, wherein the composition is formulated as a delayed release dosage unit having a coating material suitable for delaying release by 3-5 hours.

14. The composition for use according to claim 12, wherein the composition is formulated as a pharmaceutical preparation employing a pH sensitive composition comprising an enteric polymer.
Patentansprüche

1. Zusammensetzung zur Verwendung in einem Verfahren zum Behandeln oder Vorbeugen einer Infektionskrankheit durch Induzieren von Proliferation oder Akkumulieren von Transkriptionsfaktor-Foxp3-positiven regulatorischen T-Zellen, die Zusammensetzung umfassend, als einen Wirkstoff, Bakterien, welche zum Genus Clostridium des Clusters XIVa und/oder IV gehören, wobei die Bakterien die Proliferation oder Akkumulation von Transkriptionsfaktor-Foxp3-positiven regulatorischen T-Zellen induzieren.

2. Zusammensetzung zur Verwendung gemäß Anspruch 1, wobei die Bakterien zu den Clostridium-Clustern XIVa und IV in Kombination gehören.

3. Zusammensetzung zur Verwendung gemäß Anspruch 1 oder Anspruch 2, wobei die Zusammensetzung weitergehend Bakterien umfasst, welche zu einem anderen Clostridium-Cluster als Clostridium-Cluster XIVa oder -Cluster IV gehören.

4. Zusammensetzung zur Verwendung gemäß Anspruch 2 oder 3, wobei die Bakterien, welche zu den Clostridium-Clustern XIVa und IV in Kombination gehören, mehrere Stämme von Bakterien in Kombination als einen Wirkstoff umfassen, welche zum Clostridium-Cluster XIVa oder -Cluster IV gehören.

5. Zusammensetzung zur Verwendung gemäß irgendeinem der vorstehenden Ansprüche, wobei die Bakterien gemäß irgendeinem der vorstehenden Ansprüche in Form von Sporen vorliegen.

9. Zusammensetzung zur Verwendung gemäß irgendeinem der vorstehenden Ansprüche, wobei die Infektionskrankheit eine Infektion durch *Clostridium difficile* ist.

11. Zusammensetzung zur Verwendung gemäß irgendeinem der vorstehenden Ansprüche, wobei die Zusammensetzung als eine pharmazeutische Zusammensetzung für orale Verabreichung formuliert ist.

13. Zusammensetzung zur Verwendung gemäß Anspruch 12, wobei die Zusammensetzung als eine Dosierungseinheit mit verzögerter Wirkstoffabgabe formuliert ist, welche ein Überzugsmaterial aufweist, welches geeignet ist, um die Abgabe für 3-5 Stunden zu verzögern.

Revendications

1. Composition destinée à être utilisée dans un procédé de traitement ou de prévention d’une maladie infectieuse en induisant une prolifération ou accumulation de lymphocytes T régulateurs positifs au facteur de transcription Foxp3, la composition comprenant, en tant que principe actif, des bactéries appartenant aux groupes XIVa et/ou IV de Clostridium, dans lequel les bactéries induisent ladite prolifération ou accumulation de lymphocytes T régulateurs positifs au facteur de transcription Foxp3.

2. Composition pour son utilisation selon la revendication 1 dans laquelle les bactéries appartiennent aux groupes XIVa et IV de Clostridium en combinaison.

3. Composition pour son utilisation selon la revendication 1 ou 2 dans laquelle la composition comprend en outre des bactéries appartenant à un groupe de Clostridium autre que le groupe XIVa ou le groupe IV de Clostridium.

4. Composition pour son utilisation selon la revendication 2 ou 3 dans laquelle les bactéries appartenant aux groupes XIVa et IV de Clostridium en combinaison comprennent de multiples souches de bactéries appartenant au groupe XIVa ou au groupe IV de Clostridium en combinaison en tant que principe actif.

5. Composition pour son utilisation selon l’une quelconque des revendications précédentes dans laquelle lesdites bactéries selon l’une quelconque des revendications précédentes sont sous la forme de spores.

6. Composition pour son utilisation selon l’une quelconque des revendications précédentes dans laquelle lesdites bactéries sont obtenues à partir d’un échantillon fécal obtenu auprès d’un humain.

7. Composition destinée à être utilisée dans un procédé de traitement ou de prévention d’une maladie infectieuse en induisant une prolifération ou accumulation de lymphocytes T régulateurs positifs au facteur de transcription Foxp3, la composition comprenant, en tant que principe actif, une fraction sporulée de matière fécale humaine, dans laquelle la fraction sporulée induit ladite prolifération ou accumulation de lymphocytes T régulateurs positifs au facteur de transcription Foxp3.

8. Composition pour son utilisation selon la revendication 7, dans laquelle la fraction sporulée peut être obtenue par traitement au chloroforme de matière fécale humaine.

9. Composition pour son utilisation selon l’une quelconque des revendications précédentes dans laquelle la maladie infectieuse est une infection par Clostridium difficile.

10. Composition pour son utilisation selon l’une quelconque des revendications précédentes, dans laquelle la composition supprime la prolifération de lymphocytes T effecteurs.

11. Composition pour son utilisation selon l’une quelconque des revendications précédentes, dans laquelle la composition est formulée en tant que préparation pharmaceutique pour administration orale.

12. Composition pour son utilisation selon l’une quelconque des revendications précédentes, dans laquelle la composition est formulée en tant que préparation pharmaceutique utilisant une composition qui permet l’administration au côlon.

13. Composition pour son utilisation selon la revendication 12, dans laquelle la composition est formulée en tant qu’unité de dosage à libération retardée ayant un matériau d’enrobage adapté pour retarder la libération de 3 à 5 heures.

14. Composition pour son utilisation selon la revendication 12, dans laquelle la composition est formulée en tant que préparation pharmaceutique employant une composition sensible au pH comprenant un polymère entérique.
[Fig. 1]
[Fig. 2]

[Fig. 3]
[Fig. 4]

[Fig. 5]
[Fig. 6]

[Fig. 7]

80
[Fig. 10]

[Fig. 11]
[Fig. 12]

[Fig. 13]
[Fig. 14]

[Fig. 15]
[Fig. 16]

[Fig. 17]
[Fig. 18]

[Graph showing percentage of Foxp3+ in CD4 for GF and Clst. in Myd88−/− mice]
[Fig. 19]

Diagram showing the distribution of CD4+ cells in various tissue samples.

- Large intestine: 21.4, 4.03
- Small intestine: 37.7, 5.36
- Mesenteric lymph nodes: 31.3, 0.54
- Peyer's patches: 19.3, 0.55
- Spleen: 14.5, 0.39
- Thymus: 97.7, 0.024
- Cervical lymph nodes: 49.9, 0.039
- Peripheral blood: 26.8, 0.074
- Lung: 23.8, 0.15
- Liver: 19, 0.16

Venus (IL-10)
[Fig. 20]

[Fig. 21]
[Fig. 24]
[Fig. 25]

[Fig. 26]

[Fig. 27]

[Fig. 28]
Fig. 29

- LP Venus⁺ from Clost colonized mice
- LP Venus⁺ from SPF mice
- spl Foxp3⁺ cells from Foxp3 reporter mice
[Fig. 30]

[Fig. 31]
[Fig. 32].
[Fig. 34]

![Graph showing TGFβ1 levels with GF, Clost., and Lacto. conditions.]

[Fig. 35]

![Graph showing TGFβ1 levels with GF and Clost. conditions.]

97
[Fig. 40]

![Graph showing relative expression of IDO with error bars for different samples]

[Fig. 41]

![Graph showing disease score over time for SPF and SPF+Clost. groups]

0 1 2 3 4 5 6
post 2% DSS (d)

Disease score

○ SPF
□ SPF+Clost.
[Fig. 42]

![Image of SPF and SPF+Clostridium samples]

[Fig. 43]

![Image of SPF and SPF+Clostridium histological sections]
[Fig. 46]

OVA-specific IgE (ng/ml)

0 2 4 (w)
OVA+ Alum OVA+ Alum

[Fig. 47]

IL-4 (pg/ml)

0 50 100 150
-
OVA -
OVA SPF SPF+ Clost.
[Fig. 48]

![Graph showing IL-10 levels with OVA in SPF and SPF+Clost.](graph.png)
[Fig. 49]
[Fig. 50]

Germ-free mouse #1

3 strains of Clostr. mouse #1

Foxp3

Germ-free mouse #2

3 strains of Clostr. mouse #2

7.21

10.3

19

18.8
[Fig. 51]

[Fig. 52]
[Fig. 53]
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- DE 102006062250 A1 [0012]
- US 6368586 B [0043]
- JP 2010129134 A [0181]
- JP 2010071746 W [0181]

Non-patent literature cited in the description

- DE 102006062250 A1 [0012]
- US 6368586 B [0043]
- JP 2010129134 A [0181]
- JP 2010071746 W [0181]
M. BOIRIVANT; I. J. FUSS; A. CHU; W. STROBER