
METHODS
We used standard multiparametric flow cytometry techniques to immunophenotype MDSC, myeloid, and lymphocyte cell

populations (Figure 1) found in the peripheral blood of 151 biopsy-verified PCa (Gleason Score 6 = 57; >GS 6 = 94) and 271

biopsy-verified benign prostatic hyperplasia (BPH) subjects. Peripheral blood mononuclear cells (PBMCs) were isolated 20 to

36 hours post-collection using standard methods. Myeloid and lymphocyte cell populations were analyzed on a BD LSRII flow

cytometer. Compensated channel values for each event were exported from FCS format to CSV format using FlowJo software.

To prepare the data for input to the PRNN, we used a procedure wherein each channel from the FCS data export file for a panel

was used as an axis in a multidimensional space. Each axis was then divided into four segments and each event was defined

by its segment location within each axis. The number of total segments is a function of the number of channels used. For

example, if the flow cytometry data has 4 channels, each channel is divided into four segments thus resulting in 44 or 256

discrete regions in the multidimensional space; these regions are referred to as hypervoxels (illustrated in Figure 2).

For our study, two separate panels were used with one containing seven channels (lymphoid) and one containing nine channels

(myeloid) resulting in the panels having 47, or 16,384, hypervoxels and 49, or 262,144, hypervoxels, respectively. A count was

then made of the number of events falling within each hypervoxel resulting in a common feature for all samples. Each

hyperspace was then converted to a one-dimensional vector and used as input for a separate PRNN (Figure 3). After data

preparation, a series of PRNNs were created with network inputs consisting of the numerical event counts in each hypervoxel;

three datasets were then constructed: the training dataset – to ‘teach’ the two output categories through backpropagation and

parameter fitting; the validation dataset – to evaluate the fit to minimize overfitting; and the test dataset – to rank the trained

networks against each other and estimate the classification performance. ✓Using a PRNN, we were able to predict 47 out of 51 samples as GS≥7 and 27 out of 66 samples

as BPH/GS6 for a sensitivity and specificity of 92.16% (95%CI 81.12% to 97.82%) and 40.91%

(95%CI 28.95% to 53.71%), respectively (Table 1).

✓ROC curve analysis resulted in an AUC of 0.6788 (95%CI 0.5811 to 0.7766) for Holdout Samples

and 0.7461 (95%CI 0.6857 to 0.8064) for All Samples (Figure 4).

BACKGROUND AND PURPOSE
❖Blood-based biomarkers that can accurately predict prostate cancer (PCa) in at-risk men are lacking and result in a large

percentage of men undergoing unnecessary prostate biopsy procedures (false positives).

❖Myeloid-derived suppressor cells (MDSCs) are known to be key contributors in supporting tumor progression and tumor

escape with several studies quantifying them in order to detect tumor development, monitor progression, and/or predict

therapeutic responses.

❖Here, we have developed a novel methodology for analyzing flow cytometry data using machine learning (ML) with pattern

recognition neural networks (PRNN) to predict whether an at-risk male is at greater risk for PCa (Gleason Score 7 or higher)

based upon the immunophenotyping of MDSCs and various other myeloid and lymphocyte populations.
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CONCLUSIONS

➢By using hypervoxel counts as a common feature and incorporating machine learning analysis, we

are able to evaluate numerous complex relationships in multidimensional flow cytometer data

simultaneously that cannot be done using manual gating.

➢To our knowledge, this is the first application of flow cytometry event data used to directly train

pattern recognition neural networks to create a binary classifier for predicting whether an at-risk

male has a high risk for prostate cancer (Gleason Score ≥ 7).

➢We expect network performance to improve as the training sample number increases.

➢This technique may prove beneficial in a clinical setting by reducing the number of unnecessary

prostate biopsies performed each year on patients suspected of prostate cancer (elevated PSA,

abnormal DRE, etc.).

➢We are expanding our study to determine whether adding more cell surface markers will improve

the performance.

➢We believe that this technology could be used for other types of binary classifications, such as

predicting patient responses to immunotherapies and/or monitoring for the recurrence of tumors.
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Figure 1. Manual gating analysis of various 

myeloid and lymphocyte populations.

Figure 2. Illustration of the creation of 

hypervoxels.
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Finally, a holdout testing set

(i.e. never seen by the

network) was used to

determine the overall

performance of a voting

ensemble of the top-ranking

networks. PRNNs were

trained with raw flow cytometry

data from two data sets:

subjects with PCa GS≥7 vs

subjects with BPH/PCa GS<7.

Predictions were evaluated

using the performance of the

trained PRNN ensemble on 51

known PCa GS≥7 and 66

known BPH/PCa GS<7 not

used in the PRNN training set.

ROC curve and subsequent

sensitivity and specificity

analysis was performed using

GraphPad Prism. This was

not a blinded study and was

IRB approved at each

participating site.

Table 1. Sensitivity and specificity analysis of the PRNN for 

PCa classification

Figure 4. Receiver operating characteristic plot of the PRNN 

analysis for PCa classification.
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Figure 3. Illustration of a pattern recognition 

neural network (PRNN).


