A Novel “Diapeutic” Molecular Agent for Combined Oncologic Diagnosis and Therapy in a Broad Spectrum of Human Cancers: Preliminary Clinical Experience with CLR1404

From the Departments of Radiology, Carbone Cancer Center, Medical Physics, Internal Medicine, and Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; and Cellectar Biosciences, Madison, Wisconsin, USA.
Disclosure of Potential COI

The following co-authors either have or recently had a financial relationship with the following commercial organizations:

- **PJ Pickhardt**: Viatronix, Braintree, Mindways, VirtuoCTC, Cellectar
- **M Longino, A Pinchuk, M Banach, J Grudzinski, B Titz, C Jaskowiak, JP Weichert**: Cellectar

Funding for the imaging studies were supported by the NCI (R01-158800), UW Institute for Clinical and Translational Research pilot grant (9U54TR000021), and Cellectar Biosciences

Presented by: Perry J. Pickhardt, MD
Background

- **CLR1404** – an alkylphosphocholine analog
- Capitalizes on over-abundance of phospholipid ethers present in most cancer cells

\[
\text{CH}_3(\text{CH}_2)_{16}\text{CO} \quad \text{O}(\text{CH}_2)_n \quad \text{OPOCH}_2\text{CH}_2\text{N}^+\text{Me}_3 \quad \text{X} = 125, 124, 131
\]
Tumor-targeting not affected by iodine label

PET tumor imaging with 124I-CLR1404

Molecular radiotherapy with 131I-CLR1404

Potential for both imaging diagnosis and therapeutic = “diapeutic” agent
• Prolonged tumor-selective retention in >60 in vivo rodent and human cancer models & cancer stem cell models ("universal")
• No retention w/in benign or inflamed tissue
• Significant tumor growth reduction and survival benefit from a single injection of 131I-CLR1404 in a wide range of human tumor xenograft models

Purpose

Report our initial experience with CLR1404 for localization and imaging of a broad spectrum of cancer in early human trials

- **PET/CT imaging with** 124I-CLR1404
 - Oncologic imaging; compare with 18FDG PET

- **SPECT/CT imaging with** 131I-CLR1404
 - Therapeutic form of this “diapeutic” agent

Presented by: Perry J. Pickhardt, MD
Methods

- IRB-approved prospective imaging protocols
- All patients gave signed informed consent
- Early phase trials with 124I-CLR1404 PET and subtherapeutic 131I-CLR1404 SPECT
- **Main inclusion criterion:** biopsy-proven refractory advanced solid malignancy
 - Separate trial of primary brain tumors excluded
Methods

- 124I-CLR1404 PET/CT scans:
 - 64-detector-row PET/CT scanner (Discovery VCT, GE Healthcare, Waukesha, WI)
 - Serial imaging out to 5-10 days following the injection of up to 5 mCi of 124I-CLR1404
 - 2D acquisition mode
 - No correction employed for the 124I cascade gammas
 - Low-dose non-contrast MDCT for attenuation correction and lesion localization using 140 kV$_p$ and tube current modulation (70 mA average)

Presented by: Perry J. Pickhardt, MD
Methods

- 131I-CLR1404 SPECT/CT scans:
 - Serial imaging (Infinia/Hawkeye, GE Healthcare) out 21 days
 - Phase I dosimetry trial not designed to show therapeutic benefit
 - Non-contrast low-dose CT was performed using 140 kV_p and 2.5 mA

Presented by: Perry J. Pickhardt, MD
Methods

- Review of imaging studies:
 - All PET/CT and SPECT/CT studies were reviewed on PACS workstation (McKesson) with fusion software (Mirada XD3)
 - Correlation with concurrent 18FDG PET/CT in most cases
 - Additional relevant cross-sectional imaging studies were also reviewed
Results

Study Cohort: 22 patients with metastatic cancer

- Mean age, 60.4 years; 12M, 10F
- Complex prior treatment histories
- **Tumor types:** bronchogenic carcinoma (n=7), colorectal cancer (n=4), prostate cancer (n=3), triple-negative breast cancer (n=2), esophageal cancer (n=2), head & neck squamous cell carcinoma (n=2), pancreatic cancer (n=1), and melanoma (n=1)
Results

\(^{124}\text{I}\)-CLR1404 PET/CT in 14 patients and \(^{131}\text{I}\)-CLR1404 SPECT/CT in 9 patients

- Preferential uptake of \(^{124}\text{I}\)- and \(^{131}\text{I}\)-CLR1404 within metastatic foci with all cancer subtypes

- Persistent retention within metastatic sites, coupled with progressive washout of background activity, favored delayed imaging (6-21 days after single injection).

Presented by: Perry J. Pickhardt, MD
Results

124I-CLR1404 PET/CT in 14 patients and 131I-CLR1404 SPECT/CT in 9 patients

- CLR1404 uptake was evident in pulmonary, nodal, skeletal, hepatic, CNS, and other sites of active metastatic disease
- Potential advantages in oncologic imaging over FDG PET included both fewer false-negatives and fewer post-treatment false-positives

Presented by: Perry J. Pickhardt, MD
70M with bronchogenic carcinoma
60F with recurrent malignant melanoma

124I-CLR1404 PET

18F-FDG PET

Post-Contrast MR

Follow-up MR

PRESENTED AT: 50th ANNUAL MEETING SCIENCE & SOCIETY
48M with colorectal carcinoma

Post-Contrast CT

131I-CLR1404 SPECT/CT
57F with colorectal carcinoma
58F with triple-negative breast carcinoma
65M with bronchogenic carcinoma
46M with BOT squamous cell carcinoma

124I-CLR1404 PET/CT
53F with triple-negative breast carcinoma
Limitations

• Early phase investigation in humans
 – Imaging protocols not standardized or optimized, precluding quantitative analysis
 – 131I-CLR1404 doses subtherapeutic
 – Wide variety of cancer types (proof of concept)
• No iodine correction
• 2D mode of acquisition for PET studies
Conclusions

• Selective tumor uptake of CLR1404 with prolonged retention within a broad spectrum of historically difficult-to-treat metastatic cancers
 – Regardless of the site of metastatic disease

• Distinct advantages over FDG PET observed:
 – Detection in cases of FDG false-negatives
 – Lack of uptake in cases of FDG false-positives
 – 124I-CLR1404 may improve accuracy for oncologic PET imaging
Conclusions

• Combined diagnosis and therapy ("diapeutic") using the same molecule (CLR1404) may allow for truly personalized cancer care:
 – Ensuring pre-treatment tumor-specific uptake
 – Providing patient-specific dose planning
 – Enabling treatment-specific imaging surveillance
Diapeutic Treatment Paradigm

$^{124}\text{I-CLR404}$ PET/CT

Distribution, Quantification, & Personal Dose Calculation

$^{131}\text{I-CLR1404}$ Therapy Dose Injection

Monitor Response w/ $^{124}\text{I-CLR404}$ PET/CT

\[D_{\text{Tumor}} = D_{\text{Surf/Thick}} + \frac{k_{21}}{k_{G}} \left(\frac{1}{w_1 + w_2} \frac{\lambda \cdot k_{34}}{k_{G}} \left((k_{20} - k_{31})(w_1 k_{21} + w_2 k_{12}) - w_1 k_{31} \right) \right) \]
Thank You