APTOSE ENCES

Precision Oncology for Therapies of Tomorrow

Aptose Biosciences is a science-driven clinical-stage biotechnology company developing first-in-class targeted agents to address the unmet clinical need in chronic lymphocytic leukemia (CLL), non-Hodgkin's lymphoma (NHL), acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and other hematologic malignancies.

KOL Symposium on CG-806 FLT3 / BTK Inhibitor for Acute Myeloid Leukemia

NASDAQ: APTO TSX: APS

www.aptose.com

February 05, 2020

Rafael Bejar MD, PhD

Chief Medical Officer, Aptose Biosciences

MEETING HOST

Introduction of KOLs for AML

Eytan M. Stein, MD Hematologic Oncologist

Memorial Sloan Kettering Cancer Center

Clinical Expertise

Acute and Chronic Leukemias, Myelodysplastic Syndromes, Myeloproliferative Neoplasms

Developing Novel Therapies for AML, including AG-120 IDH-1 Inhibitor

Led Development of IDH2 Inhibitor, Enasidenib

Publications in Nature, Nature Medicine, The New England Journal of Medicine, Blood, Leukemia, Olthers

Brian J. Druker, MD Collaborator & Chair of SAB

Key Role in Dev't of Gleevec

Member, National Academy of Medicine, National Academy of Sciences & American Academy of Arts & Sciences

Winner of Karnofsky Award, Lasker "America's Nobel" Award

Winner of Japan Prize in Healthcare and Medical Technology and the Tang Prize in Biopharmaceutical Science

Winner of the prestigious Sjöberg Prize

Leader of Inter-institutional Beat AML Initiative

Aaron Goldberg, MD, PhD

Hematologic Oncologist Memorial Sloan Kettering Cancer Center

ASH Fellow Scholar Award in Clinical Research

Advancing Science through Pfizer Investigator Research Exchange (ASPIRE) Oncology/Hematology Clinical Research Award

ASCO Young Investigator Award

Franklyn Ellenbogen Prize in Hematology-Oncology, Weill Cornell Medical College

Clinical Expertise

Acute and Chronic Leukemias, Myelodysplastic Syndromes, Myeloproliferative Neoplasms

AGENDA

• Eytan Stein, MD

- AML in the Age of Targeted Therapies

• Aaron Goldberg, MD, PhD

– FLT3 Inhibitors: Recent Advances and Emerging Challenges

• Rafael Bejar, MD, PhD

- Introduction to CG-806

Brian Druker, MD

- Evolution of Kinase Inhibitors
- Perspectives of CG-806 with AML

Summary with Q&A

Eytan M. Stein, MD

Hematologic Oncologist Memorial Sloan Kettering Cancer Center

AML IN THE AGE OF TARGETED THERAPIES

Memorial Sloan Kettering Cancer Center

Treatment of Acute Myeloid Leukemia in the Age of Targeted Therapies

Eytan M. Stein, MD Assistant Attending Physician Director, Program for Drug Development in Leukemia Leukemia Service, Department of Medicine Memorial Sloan Kettering Cancer Center New York, New York

Disclosures

- Advisory Board Participation: Abbvie, Agios, Aptose, Astellas, Celgene, Bayer, Pfizer, PTC Therapeutics, Daiichi-Sankyo, Novartis, Syros.
- Equity (Founder): Auron Therapeutics
- **Research Funding:** Agios, Amgen, Celgene, Bayer, Biotheryx, Syndax, Syros.

Cyto/Molecular Heterogeneity of Acute Myeloid Leukemia

Dohner, Blood, 2017

FLT3 Inhibitors

- FLT-3 ITD found in 30% of cytogenetically normal AML
- Constitutive activation of FLT-3
 receptor
- Confers a poor prognosis
- Multiple attempts to target FLT-3

Cancer; pages 3293-3304, 11 FEB 2011 DOI: 10.1002/cncr.25908

Phase 3 RATIFY Study: Chemotherapy ± Midostaurin in Newly Diagnosed AML

Stone RM et al. *N Engl J Med*. 2017;377:454-464.

RATIFY – Overall Survival

A Median Overall Survival

Stone RM et al. N Engl J Med. 2017;377:454-464.

Gilteritinib – Phase III ADMIRAL Study

- ADMIRAL addresses gilteritinib efficacy in the R/R disease setting compared with salvage chemotherapy; the study
 includes patients who are and are not fit for high intensity chemotherapy¹⁻³
- Based on data from the ongoing ADMIRAL study, gilteritinib is approved in Japan and US for treatment of adults with FLT3-mutated R/R AML have been submitted⁴

ADMIRAL: Overall Survival (ITT Population: N=371)

Perl A, NEJM, 2019

Mennorial Sloan Kettering Cancer Center,

IDH1 and IDH2

Pathogenesis of IDH Mutant AML

 IDH1 in cytoplasm and IDH2 in mitochondria

Cancer-associated IDHm produces 2hydroxyglutarate (R-2-HG)

Prensner and Chinnaiyan Nature, 2011

Mencorial Sloan Kettering Cancer Center,

ENAsidenib (IDH2)

Efficacy of Enasidenib in R/R AML

	Relapsed/Re	Relapsed/Refractory AML					
	Enasidenib 100 mg/day (n=214)	All patients (N=280)					
Overall response rate (ORR),* % (n/N)	38.8% (83/214)	39.6% (111/280)					
[95%CI for ORR]	[32.2%, 45.7%]	[33.9%, 45.6%]					
CR + CRi/CRp rate, % (n/N)	29.0% (62/214)	27.9% (78/280)					
Best response							
Complete remission (CR), n (%)	42 (19.6)	53 (18.9)					
[CR rate 95%CI]	[14.5%, 25.6%]	[14.5%, 24.0%]					
CR with incomplete count recovery (CRi/CRp), n (%)	20 (9.3)	25 (8.9)					
Partial remission, n (%)	9 (4.2)	17 (6.1)					
Morphologic leukemia-free state, n (%)	12 (5.6)	16 (5.7)					
Stable disease, [†] n (%)	98 (45.8)	122 (43.6)					
Progressive disease, [‡] n (%)	19 (8.9)	26 (9.3)					
Not evaluable, n (%)	3 (1.4)	4 (1.4)					
Time to first response, months, median (range)	1.9 (0.5-9.4)	1.9 (0.5-9.4)					
Duration of response, months, median [95%CI]	5.6 [3.8, 7.4]	5.6 [4.6, 6.5]					
Time to best response, months, median (range)	3.7 (0.6-14.7)	3.7 (0.5-14.7)					
Time to CR, months, median (range)	3.7 (0.7-14.7)	3.8 (0.5-14.7)					
Overall survival, months, median [95%CI]	8.8 [7.7, 9.6]	8.8 [7.8, 9.9]					
Event-free survival, [§] months, median [95%CI]	4.7 [3.7, 5.6]	4.6 [3.7, 5.6]					

Overall Survival – All R/R Patients

Stein EM, Dinardo CD, et al, Blood 2017

Newly Diagnosed IDH2 Mutant AML – Aza ± Enasidenib

Primary Endpoint: ORR Key Secondary Endpoints: CR rate, safety, overall survival (OS), event-free survival (EFS)

Dinardo CD, ASH, 2019

RESPONSE

	ENA + AZA (n=68)	AZA Only (n=33)
Overall response (CR, CRi/CRp, PR, MLFS), n (%)	48 (71)	14 (42)
[ORR 95%CI]	[58, 81]	[26, 61]
<i>P</i> value	0.0	064
CR, n (%)	36 (53)	4 (12)
[CR rate 95%CI]	[41, 65]	[3, 28]
<i>P</i> value	0.0	001
CRi/CRp, n (%)	7 (10)	4 (12)
PR, n (%)	3 (4)	4 (12)
MLFS, n (%)	2 (3)	2 (6)
Stable disease, n (%)	13 (19)	13 (39)
Disease progression, n (%)	2 (3)	1 (3)
Not evaluable / Missing, n (%)	5 (7)	5 (15)
Time to first response, months, median (range)	1.9 (0.7–9.0)	2.0 (0.8–5.8)
Time to CR, months, median (range)	5.5 (0.7–19.5)	3.7 (3.0–4.1)
Duration of response, months, median [95%CI]	24.1 [11.1, NR]	12.1 [2.8, 14.6]

Dinardo CD, ASH, 2019

SURVIVAL

Mencorial Sloan Kettering Cancer Center,

IVOsidenib (IDH1 inhibitor)

Ivosidenib – Response and Response Duration

Response	Primary Efficacy Population (N=125)	Relapsed or Refractory AML (N=179)		
CR or CRh				
No. of patients	38	54		
% (95% CI)	30.4 (22.5–39.3)	30.2 (23.5–37.5)		
Median time to CR or CRh (range) — mo	2.7 (0.9–5.6)	2.0 (0.9–5.6)		
Median duration of CR or CRh (95% CI) — mo	8.2 (5.5–12.0)	6.5 (5.5–11.1)		
CR				
No. of patients	27	39		
% (95% CI)	21.6 (14.7–29.8)	21.8 (16.0–28.6)		
Median time to CR (range) — mo	2.8 (0.9–8.3)	2.8 (0.9–8.3)		
Median duration of CR (95% CI) — mo	9.3 (5.6–18.3)	9.3 (5.6–12.5)		
Overall response				
No. of patients	52	70		
% (95% CI)	41.6 (32.9–50.8)	39.1 (31.9–46.7)		
Median time to first response (range) — mo§	1.9 (0.8–4.7)	1.9 (0.8–4.7)		
Median duration of response (95% CI) — mo	6.5 (4.6–9.3)	6.5 (4.6–9.3)		

Overall Survival by Best Response in R/R AML 500 mg (n=179)

	Months
Overall survival, median	[95% CI]
CR+CRh	18.8 [14.2, NE]
Non-CR/CRh responders	9.2 [6.7, 10.8]
Non-responders	4.7 [3.7, 5.7]
All	9.0 [7.1, 10.0]
Overall follow-up, median (range)	15.3 (0.2–39.5)

57	57	57	56	50	43	32	25	16	15	11	7	4	4	4	3	2	2	1	1	C R + C R h
18	17	15	14	10	6	3	2	1	0											Non-CR/CRh responders
104	77	55	38	29	15	9	6	3	2	0										Non-responders

"Unfit" Patients – HMA/Venetoclax

Table 5. Efficacy outcomes by subgroups

Subgroup	Evaluable for response/OS, n (%)	CR + CRi, n (%)	n for Median duration of CR + CRi	Median duration of CR + CRi, mo (95%Cl)	Median OS, mo (95%CI)
All patients	145	97 (67)	97	11.3 (8.9, NR)	17.5 (12.3-NR)
Cytogenetic risk Intermediate Poor	74 (51) 71 (49)	55 (74) 42 (60)	55 42	12.9 (11, NR) 6.7 (4.1, 9.4)	NR (17.5-NR) 9.6 (7.2-12.4)
Age ≥75 y <75 y	62 (43) 83 (57)	40 (65) 57 (69)	40 57	9.2 (6.4, 12.5) 12.9 (9.2, NR)	11 (9.3-NR) 17.7 (14.2-NR)
AML De novo Secondary	109 (75) 36 (25)	73 (67) 24 (67)	73 24	9.4 (7.2, 11.7) NR (12.5, NR)	12.5 (10.3-24.4) NR (14.6-NR)
Mutations* FLT3† IDH1 or 2‡ NPM1 TP53	18 (12) 35 (24) 23 (16) 36 (25)	13 (72) 25 (71) 21 (91) 17 (47)	13 25 21 17	11 (6.5, NR) NR (6.8, NR) NR (6.8, NR) 5.6 (1.2, 9.4)	NR (8-NR) 24.4 (12.3-NR) NR (11-NR) 7.2 (3.7-NR)

"Unfit" Patients – HMA/Venetoclax

Courtney D. DiNardo et al. Blood 2019;133:7-17

Maintenance - QUAZAR AML-001: Study design

International, multicenter, placebo-controlled, double-blind, randomized, phase III study that enrolled patients from 148 sites in 23 countries (NCT01757535)

Wei A, ASH 2019

Primary endpoint: Overall Survival from randomization

Wei A, ASH 2019

Thank You!

steine@mskcc.org

Aaron Goldberg, MD, PhD

Hematologic Oncologist Memorial Sloan Kettering Cancer Center

FLT3 INHIBITORS: RECENT ADVANCES AND EMERGING CHALLENGES

APTOSENCES

FLT3 Inhibition in Acute Myeloid Leukemia: Recent Advances and Emerging Challenges

Aaron D. Goldberg, MD, PhD Assistant Attending Physician Leukemia Service

February 5, 2020

Consulting/Advisory Board Participation:

– Abbvie, Aptose, Celgene, Daiichi-Sankyo

• Research Funding:

– Abbvie, Aprea, Arog, Daiichi-Sankyo, Pfizer

Acute Myeloid Leukemia Is a Deadly Cancer of the Blood and Bone Marrow

Profound Clinical Consequences

- Patients experience abnormal blood counts, a weakened immune system, leading to infections, weakness, bleeding, and transfusion dependence
- AML can be diagnosed at any age, but median age at diagnosis is 68

Poor Prognosis

- AML progresses rapidly and can be difficult to treat
- ~21,450 people will be diagnosed with AML this year
- ~10,920 deaths from AML will occur this year
- The 5-year survival rate for patients with AML is approximately 28.3%.

https://www.lls.org/leukemia/acute-myeloid-leukemia https://www.cancer.org/cancer/acute-myeloid-leukemia/about/what-is-aml.html

AML Is a Deadly Disease in Even "Favorable" Subtypes

Overall Survival by Cytogenetic Group

Older adults with AML have a particularly poor prognosis

Burnett AK. Hematology. 2012;2012:1-6.
FLT3 activation is the most common abnormality in AML

Found in 25-37% of patients

Papaemmanuil E et al. N Engl J Med 2016;374:2209-2221.

FLT3 activation is the most common abnormality in AML

Found in 25-37% of patients

Papaemmanuil E et al. N Engl J Med 2016;374:2209-2221.

FLT3 Mutations in Acute Myeloid Leukemia

Litzow MR. Blood. 2005.

FLT3-ITD mutations are poor prognostic markers in AML

Current FLT3 Inhibitors in AML

Agent	Midostaurin	Gilteritinib*	Quizartinib	
Dosing	Twice daily	Once daily	Once daily	
FDA approved	A approved Yes - 2017		No – approved in Japan 2019	
Newly dx or R/R	Newly dx	R/R	R/R	
Monotherapy or combination with chemo	Combination with chemotherapy	Monotherapy	Monotherapy	
FLT3-ITD or TKD	FLT3-ITD and TKD	FLT3-ITD and TKD	FLT3-ITD only	
Adverse effects	Nausea, vomiting, diarrhea	CK elevation, LFTs	QT prolongation	

*Gilteritinib: only FLT3 inhibitor currently FDA approved in R/R AML with FLT3 mutations

Memorial Sloan Kettering Cancer Center

Newly diagnosed FLT3+ AML: FLT3 inhibitors + chemotherapy

RATIFY (C10603) Trial Schema

*Stratification: TKD; ITD with allelic ratio <0.7 'vs' ≥0.7

Stone RM et al. N Engl J Med. 2017;377:454-464.

RATIFY – Remission Rates

Table 3. Summary of Complete Remission.*						
Variable	Midostaurin Group (N=360)	Placebo Group (N=357)	P Value†			
Protocol-specified complete remission — no. (%)	212 (59)	191 (54)	0.15			
Kaplan–Meier estimate of time to complete remission — days						
Median	35	35				
Range	20–60	20–60				

Stone RM et al. N Engl J Med. 2017;377:454-464.

RATIFY: Overall Survival (Primary Endpoint)

Stone RM et al. N Engl J Med. 2017;377:454-464.

Limitations of midostaurin and opportunities in newly diagnosed FLT3 mutant AML

- Midostaurin approved in combination with intensive chemotherapy in newly diagnosed FLT3+ AML
- Age of inclusion 59 and younger median age of AML diagnosis is 68
- Marginal benefit in OS over chemotherapy alone 4 year OS 51.4%
- Midostaurin is a multitargeted (dirty) TKI and among least potent FLT3 inhibitors
- More potent FLT3 inhibitors (crenolanib, gilteritinib) combined with chemotherapy promising in phase II studies – phase III studies randomizing chemo + midostaurin vs chemo + novel FLT3i are ongoing

Memorial Sloan Kettering Cancer Center

Relapsed / refractory AML – quizartinib and gilteritinib

Relapsed and refractory FLT3 mutant AML has a very poor prognosis

Pratz and Levis, How I treat FLT3-mutated AML, Blood, 2017

QuANTUM-R: Phase 3, Open-label Study of Single-agent Quizartinib vs Salvage Chemotherapy in R/R *FLT3*-ITD–positive AML

Cortes J, ASH 2018

QuANTUM-R: CONSORT Diagram

Cortes J, ASH 2018

R/R FLT3+ AML - Quizartinib

Characteristic	Quizartinib n = 245	Salvage Chemotherapy n = 122		
Best response, n				
CRc ^a	118 (48%)	33 (27%)		
CR	10 (4%)	1 (1%)		
CRp	9 (4%)	0		
CRi	99 (40%)	32 (26%)		
PR	52 (21%)	4 (3%)		
ORR (CRc + PR)	170 (69%)	37 (30%)		
No response	62 (25%)	45 (37%)		
Not evaluable	13 (5%)	40 (33%)		
Time to first CRc				
Median (range)	4.9 (3.7-19.7) wks	4.0 (2.0-14.9) wks		
Duration of CRc				
Median (95% CI)	12.1 (10.4-27.1) wks	5.0 (3.3-12.6) wks		

Cortes J, ASH 2018

R/R FLT3+ AML - Quizartinib

- Approved in Japan
- Not approved by US FDA

Mechanisms of resistance to quizartinib

Subject number	Sex	Age (years)	Prior therapy	Karyotype at enrolment	Karyotype at relapse	Blasts in relapse sample (%)	New mutation at relapse	ITD ⁺ clones with mutation	Weeks or study
1009-003	F	75	7+3	45~54,XX,+3,+6,+7, +8,+13,+14,+21, +22[cp15]/46,XX[5]	52,XX,+3,+6,+7,+8, +10,+12,+13[cp7]/46, XX[14]	90	D835F	6/15	12
1011-006	М	70	7+3, low-dose cytarabine	Normal	ND	10	D835Y	4/15	8
1011-007	F	56	7+3, HAM	Normal	46,XX,del(11) (p?13p?15) [12]/46,XX[9]	80	F691L D835V	4/24 5/24	11
1005-004	F	60	Cytarabine and mitoxantrone	Normal	Normal	92	F691L	9/22	19
1005-006	М	43	7+3, MEC, allogeneic stem cell transplant	6,XY,t(1;15)(p22;q15)	ND	59	D835Y	8/17	6
1005-007	F	59	7+3, HDAC	Normal	ND	39	D835V	9/21	23
1005-009	М	68	Cytarabine and mitoxantrone	Normal	ND	58	D835Y	8/14	19
1005-010	M	52	7+3, HDAC, mitoxantrone and etoposide	46,XY,t(4;12)(q26;p11.2), t(8;14)(q13;q11.2)	ND	22	F691L	6/18	20

Table 1 | Summary of FLT3 kinase domain mutations in patients relapsed on AC220

All patients achieved morphological bone marrow blasts of \leq 5% at best response. 7+3, low-dose cytarabine for 7 days plus 3 days anthracycline; HAM, high-dose cytarabine plus mitoxantrone; HDAC, high-dose cytarabine; MEC, mitoxantrone, etoposide, cytarabine. ND, not done.

- Acquired FLT3 TKD mutations validate FLT3 inhibition
- Deep sequencing shows polyclonal resistance
- Crenolanib and gilteritinib: both active against FLT3-D835

Smith CC et al. Nature 2012

FLT3 kinase mutations

Gilteritinib – Phase III ADMIRAL Study

- ADMIRAL addresses gilteritinib efficacy in the R/R disease setting compared with salvage chemotherapy; the study includes patients who are and are not fit for high intensity chemotherapy¹⁻³
- Based on data from the ADMIRAL study, gilteritinib is approved in Japan and US for treatment of adults with *FLT3*-mutated R/R AML⁴

Perl et al. NEJM 2019

Response Outcomes (ITT Population: N=371)

Response Parameter*	Gilteritinib (n=247)	Salvage Chemotherapy (n=124)	
CR, n (%)	52 (21)	13 (11)	
CRh, n (%)	32 (13)	6 (5)	
CRi, n (%)	63 (26)	14 (11)	
CRp, n (%)	19 (8)	0 (0)	
CRc, n (%)	134 (54)	27 (22)	
CR/CRh, n (%)	84 (34)	19 (15)	
PR, n (%)	33 (13)	5 (4)	
ORR, n (%)	167 (68)	32 (26)	
NR, n (%)	66 (27)	43 (35)	
Mean time to achieve CRc (SD), months	2.3 (1.9)	1.3 (0.5)	
Median DoR [†] (95% CI), months	11.0 (4.6, NE)	1.8 (NE, NE)	
Allogeneic HSCT, n (%)	63 (26)	19 (15)	

*Response was not evaluable in 14 patients (6%) in the gilteritinib arm and in 49 patients (40%) in the salvage chemotherapy arm.

†Duration of remission includes duration of CRc, duration of CR/CRh, duration of CR, duration of CRp, and duration of response (CRc + PR).

Abbreviations: CR, complete remission; CRc, composite complete remission; CRh, complete remission with partial hematologic recovery; CRi, complete remission with incomplete hematologic recovery;

CRp, complete remission with incomplete platelet recovery; DoR duration of remission; HSCT, hematopoietic stem cell transplantation; ITT, intention-to-treat; NE, not estimable; ORR, overall response rate; PR, partial remission; SD, standard deviation.

ADMIRAL: Overall Survival (ITT Population: N=371)

Two-sided *P*-values were determined according to the log-rank test; the Kaplan-Meier method in combination with the Greenwood formula were used to determine overall survival and corresponding 95% confidence intervals.

Abbreviations: CI, confidence interval; HR, hazard ratio; ITT, intention-to-treat; OS, overall survival.

Post-HSCT Survival in the Gilteritinib Arm: Effect of Maintenance Therapy

(Landmark Analysis From Day 60 Post-HSCT; n=51)

Two-sided *P*-values were determined according to the log-rank test; the Kaplan-Meier method in combination with the Greenwood formula were used to determine overall survival and corresponding 95% confidence intervals.

Abbreviations: CI, confidence interval; HR, hazard ratio; HSCT, hematopoietic stem cell transplantation; ITT, intention-to-treat; NE, not estimable; OS, overall survival.

ADMIRAL: Overall Survival (ITT Population: N=371)

Median OS (95% CI)

9.3 months (7.7, 10.7) Gilteritinib 120 mg/day Salvage chemotherapy 5.6 months (4.7, 7.3) + Censored HR=0.637 (95% CI: 0.490, 0.830); P=0.007 Survival Probability (%) 12-Month Overall Survival Rates by ^FTreatment Arm Salvage Gilteritinib (n=247) Chemotherapy (n=124)37% 17% Perl et al. **NEJM 2019** Time (Months) Patients at Risk (n) Gilteritinib 120 mg/day 247 Salvage chemotherapy 124

Two-sided *P*-values were determined according to the log-rank test; the Kaplan-Meier method in combination with the Greenwood formula were used to determine overall survival and corresponding 95% confidence intervals.

Abbreviations: CI, confidence interval; HR, hazard ratio; ITT, intention-to-treat; OS, overall survival.

Multiple mechanisms of gilteritinib resistance

McMahon CM et al. Cancer Discovery. 2019

Multiple mechanisms of gilteritinib resistance

McMahon CM et al. Cancer Discovery. 2019

FLT3-ITD: key mechanism of resistance to front-line venetoclax combinations

FLT3 inhibition in AML --- next steps

- Outcomes have improved --- but most patients with AML and particularly FLT3 mutated AML still die of their disease
- FDA approved FLT3 inhibitors include midostaurin (untreated AML in combination with chemotherapy) and gilteritinib (R/R AML as monotherapy); quizartinib approved in Japan (R/R AML as monotherapy)
- Current FLT3 inhibitors are NOT curative multiple mechanisms of resistance – even responding patients will eventually progress – median OS for gilteritinib treated R/R AML patients is 9.3 months
- Development of FLT3 inhibitors for FLT3 mutated AML patients who fail gilteritinib represents an urgent clinical need
- Ideal drug for gilteritinib failures: potent FLT3 inhibitor, target FLT3-ITD and FLT3-TKD, target multiple mechanisms of FLT3 resistance, active in setting of RAS mutations; potentially synergize with venetoclax

Acknowledgments

Martin Tallman Eytan Stein **Ross Levine** Max Stahl Raajit Rampal Bart Getta Andrew Dunbar Zach Epstein-Peterson Mark Gever Kamal Menghrajani Ellin Berman Virginia Klimek Jae Park Jacob Glass Alan Shih Aaron Viny Omar Abdel Wahab eter Maslak Michael Mauro David Scheinberg **MSKCC** Leukemia Service

Sergio Giralt, Roni Tamari MSKCC BMT Service

Chris Famulare, Minal Patel, Erin McGovern MSKCC Center for Hematologic Malignancies (CHM)

Mikhail Roshal, Wenbin Xiao, Maria Arcila, Yanming Zhang, Filiz Sen, Ahmet Dogan MSKCC Dept of Pathology

Sean Devlin, Andriy Derkach Elli Papaemmanuil Noushin Rahnamay Farnoud MSKCC Biostatistics C. David Allis Rockefeller University

Abbvie, Aptose, AROG, Daiichi Sankyo, Pfizer

DeLuca Foundation Weill Cornell / MSKCC CTSA # UL1TR00457

Clinical Fellow Scholar Award

Memorial Sloan Kettering Cancer Center

Rafael Bejar MD, PhD Chief Medical Officer, Aptose Biosciences

CG-806

1st-in-Class Oral FLT3 / rBTK Inhibitor

- 1. Non-covalent "reversible" inhibitor with unique kinome targeting profile
- 2. Potent inhibitor of all forms of BTK (WT / C481S) driver kinase
- 3. Potent inhibitor of all forms of FLT3 (WT / ITD or TKD mutated) driver kinase
- 4. Suppresses multiple signaling pathways essential for cancer cell survival
- 5. Precision spares safety targets & pathways associated with toxicity
- 6. Ongoing trial Ph1a/b for CLL & NHL B-cell malignancies
- 7. Planning trial Ph1a/b for AML/MDS myeloid malignancies

"Cluster-Selective Kinase Inhibitor": CG-806 Potently and Selectively Inhibits Clusters of Related Kinases

- Mutation Agnostic
 - Inhibits all forms of FLT3
 - Inhibits all forms of BTK
 - Simultaneously suppresses multiple signaling pathways
- Robust Safety Profile
 - NOT a "dirty" kinase inhibitor
 - Avoids kinases that impact safety
 - No drug-related AEs seen to date
- Inhibits Clusters of Kinases that Drive Hematologic Malignancies
 - FLT3 cluster \rightarrow AML & MDS
 - BTK cluster \rightarrow CLL & NHL

CG-806 Suppresses Key Oncogenic Targets and Pathways in Myeloid & Lymphoid Malignancies

CG-806 is More Than Just FLT3 or BTK Inhibitor: Suppress Initiation and Transmission of Oncogenic Signaling

FLT3 / CSF1R / PDGFRα Receptors TRK / RET / MET Receptors BTK / AURK Intracellular Kinases BCR Pathway (SYK/SRC/LCK/LCK) AKT Pathway (SYK/PI3K/AKT/mTOR/S6K) JAK/STAT Pathway ERK Pathway MYC Pathway

MOLM14

MV4-11

CG-806 Phase 1 Clinical Development Plan

Developing CG-806 for R/R-CLL/NHL and R/R-AML/MDS

But AML patients are acutely ill and do not wish to dose sub-therapeutically

CG-806 in Phase 1a/b Clinical Trial for Treatment of Patients with R/R-CLL/NHL

Dose Level 1 (150mg BID for 28d) Completed

- Only One Patient Required in Dose Level 1
- R/R-CLL/SLL with TP53 mutation ; Heavily pretreated
- Challenging Case with TP53 mutation No DLTs and completed Cycle 6

Dose Level 2 (300mg BID for 28d) Completed Only One Patient Required in Dose Level 2

- R/R-CLL with unmutated IGHV ; Heavily pretreated
- Marrow involvement with neutropenia and thrombocytopenia
- Highly complicated disease to manage No DLTs and completed Cycle 4

Dose Level 3 (450mg BID for 28d) Dosing Ongoing

Three Patients Required in Dose Level 3 – Three patients on study

CG-806 Delivered Evidence Safety, Target Engagement and Clinical Activity at Dose Level 2 (300mg BID)

Evidence of Safety with No Unexpected Toxicities

- No myelosuppression ; stabilized platelets and neutrophils
- No drug-related SAEs ; No dose-limiting toxicities

- 100% inhibition of P-BTK in PBMC : ELISA Assay
- Inhibition of P-BTK, P-SYK, others : PIA Assay

Evidence of Clinical Activity in R/R CLL

- Marked lymphocytosis
 - BTK inhibition in patients leads to CLL cell exfiltrated from lymphoid tissues
 - Observed immediately upon initiation of dosing in Cycle 1

Vell-behaved Steady-State Oral Pharmacokinetics

Absorption that delivered near-uM plasma exposure levels

CG-806 Favorable Steady-State Pharmacokinetics (C_{MIN})

- Oral absorption, dose-related exposure, predictable steady-state PK
- Achieving 0.6-1µM steady state (C_{min}) levels at Dose Level 2
- Approaching active exposure in Dose Level 2
- Continue dose escalation to optimal dose
- Nearing dose for application to AML Perhaps Dose Level 3 or 4

CG-806 : A New Class of Drugs Only BTKi Also to Inhibit FLT3 for AML

Breadth for Difficult-to-Treat CLL and NHL Patients

- Potently inhibits WT-BTK and C481S-BTK
- Potential to treat CLL patients failing approved & investigational agents
- Potential to treat Richter's Transformation, Tx-refractory DLBCL / FL / DHL

Safety : Targets Key Oncogenic Kinases and Avoids Safety Targets

- To date: safe, well-tolerated, and no drug related AEs have been observed
- Does not inhibit TEC, EGFR or ErbB2 kinases that cause toxicities with other kinase inhibitors
- Structurally distinct : assumes unique binding mode in kinase active sites relative to competitor agents

PLUS....Under Development for AML Patients Failing Other Drugs

- Only agent that inhibits BTK and FLT3 and is being developed for CLL/NHL and AML/MDS
CG-806 Inhibits All Forms of FLT3 More Potently than **Other FLT3 Inhibitors**

Mutations in the FLT3 Kinase are Clear Drivers of AML

Reaction Biology Corp.

Blood. 2009 Oct 1; 114(14): 2984-2992 J Clin Oncol 32:5s, 2014 (suppl; abstr 7070)

Blood 2014 Jan 2: 123(1): 94-100 : AACR Poster 2012

ASH Oral Presentation 2016

N/A - Data not available / Not Applicable.

CG-806 Extends Survival in Dose Dependent Way in Mouse Model of AML After Oral Dosing for 28 Days

CG-806 Rapid and Sustained Antitumor Activity in Mouse Model of AML After Oral Dosing for 28 Days

- No weight loss or toxicity at any dose level
- Significant cure rates with two highest dose levels
- Re-challenge of uncured mice with large tumors
 - Active on large tumors and no resistance observed

300mg/kg BID 10 of 11 mice cured with 1st course

"Uncured" mouse (see above) at d88 was treated with 300mg/kg BID for 2nd course of 28 days beginning d88 and that tumor responded to treatment

CG-806 Efficacy in PDX Model Against AML Patient Cells with FLT3 ITD + D835 Mutations

Patient information: <u>AML patient (FLT3-ITD)</u> received Sorafenib+Azacitidine Tx and experienced CR after one cycle therapy; relapsed after 3 cycles of treatment and <u>acquired a D835 mutation</u> (now FLT3-ITD/D835)

Model implanted with FLT3 ITD+D835 mutated primary AML cells. CG-806 Tx initiated d27 (QDx5/wk Orally). hCD45+/mCD45- leukemic cells in peripheral blood were quantitated with flow cytometry.

Brian J. Druker, MD Collaborator & Chair of SAB

EVOLUTION OF KINASE INHIBITORS AND PERSPECTIVES OF CG-806 WITH AML

APTOSENCES

CG-806 in the Context of Kinase Inhibitors

- **Protein Kinases** >500 human protein kinases
- Mutated Kinases Alter Signaling Cascades Can Lead to Cancer
- Over 50 Kinase Inhibitors (Kis) approved in the US
 - Saved numerous lives and generated tremendous revenues
- Multiple Generations of KIs Have Been Developed
 - Trailblazer: Imatinib highly selective for Bcr-Abl
 - First Generation: Non-selective with off-target toxicities
 - Second Generation: More selective to reduce toxicities resistance problematic
 - Next Generation: Hits multiple targets, but avoids toxicity and rapid emergence of resistance

OHSU and Aptose Collaboration to Develop CG-806 as a Kinase Inhibitor for AML

CG-806 Exerts <u>Broad</u> & <u>Superior Killing</u> Potency Compared to FLT3i on <u>AML Patient Samples</u>

- OHSU Measured the Ability of CG-806 and Various FLT3i's to Kill Primary Cells from >200 AML Patients IC₅₀ transformed into a Heatmap of Sensitivity
- CG-806 more potent and more broadly effective in killing primary AML cells bearing wild-type FLT3 or FLT3-ITD

Sensitivity of AML Patients Samples to CG-806: AACR 2019 Maintains Potency in Samples with FLT3, IDH1, NPM1,

p53, N-RAS and ASXL1 Mutations

- Sensitivity of AML patient samples generally related to FLT3 ITD high allelic ratio (IC50 = 0.03 μM) vs. low allelic ratio (IC50 = 0.11 μM)
- AML patient samples with mutated IDH1 are more sensitive to CG-806 relative to the IDH WT or IDH2 mutations (p < 0.05)
- AML patient samples with TP53 WT and TP53 mutations equivalently sensitive to CG-806
 - AML patient samples with TP53 mutations were resistant to most other FLT3 inhibitors
- AML patient samples with NRAS WT and NRAS and ASXL1 WT and ASXL1 mutations equivalently sensitive to CG-806

CG-806 Combines Successfully with Venetoclax to Kill Primary AML Patient Samples

CG-806 as a Kinase Inhibitor for AML

• CG-806 Preclinical Profile Meets "NextGen KI" Profile

- Strong efficacy and safety, while avoiding rapid emergence of drug resistance
- Hits multiple "operative" targets/pathways but avoid targets that compromise safety
- If the preclinical safety profile of CG-806 continues in humans, CG-806 has the potential

to be among the best in class

CG-806 May Become a Highly Differentiated Agent for AML / MDS

- CG-806 is more than a FLT3 inhibitor
- Suppresses FLT3, JAK/STAT, RAS, MAPK, ERK, AKT, BTK (SRC, SYK, LCK)
- Safe and well tolerated to date

Rafael Bejar MD, PhD Chief Medical Officer, Aptose Biosciences

SUMMARY OF CG-806 APPLICATION TO AML

AML Patient Genes Engendering Sensitivity or Resistance Quizartinib vs Gilteritinib

Volcano plot showing mutations significantly associated with sensitivity (red) or resistance (blue) to Quizartinib alone.

- ":" indicates co-occurring mutations
- · Horizontal dashed line indicates significance threshold

Volcano plot showing mutations significantly associated with sensitivity (red) or resistance (blue) to Gilteritinib alone.

- ":" indicates co-occurring mutations
- · Horizontal dashed line indicates significance threshold

Unlike other FLT3 inhibitors, CG-806 retains high potency in patient samples carrying NRAS mutations

NRAS-WT cohort (n=88), NRAS-MUT cohort (n=14)

	CG-806/WT	CG-806/MUT	Gilteritinib/WT	Gilteritinib/MUT	Quizartinib/WT	Quizartinib/MUT	Midostaurin/WT	Midostaurin/MUT
Mean	0.3598	0.9902	2.592	5.016	1.232	5.278	5.131	5.247

CG-806 is significantly superior to other FLT3 inhibitors in both NRAS-wildtype and NRAS-mutant patient samples

NRAS-MUT cohort (n=14)

CG-806 in AML Summary

Medical Need for New Agents to Control R/R-AML

- Patients are failing all current therapies
- Seek to control AML resistant to other FLT3i and venetoclax
- Seek to treat AML with mutations in IDH-1, TP53, RAS
- Seek to treat "unfit" patient with AML

• CG-806 Potently Inhibits All Known Forms of FLT3

- Potently suppresses multiple oncogenic signaling pathways
- Avoids targets traditionally associated with toxicity
- Human PK Exposures Nearing Therapeutic Range at Dose Levels 3

• Plan to Submit IND Amendment as Soon as Possible

Provided PK and Safety Data supportive

• Attractiveness for Clinical and Commercial Success Driven by:

- FLT3 is a validated target
- Combinatorial optionality
- Potential cornerstone of therapy as oral targeted agent
- Broad applicability but unlikely to require genomic/biomarker-guided patient selection

CG-806

Ideal drug for gilteritinib failures:

- potent FLT3 inhibitor,
- target FLT3-ITD and FLT3-TKD
- target multiple mechanisms of FLT3 resistance
- active in setting of RAS mutations
 - potentially synergize with venetoclax

Thank You!

